
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Async in C# 5.0

Alex Davies

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

Async in C# 5.0
by Alex Davies

Copyright © 2012 Alex Davies. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Rachel Steely

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Rebecca Demarest

Revision History for the First Edition:
2012-09-07 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449337162 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Async in C# 5.0, the image of a palm cockatoo, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-33716-2

[LSI]

1347041364

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449337162
http://www.it-ebooks.info/

Table of Contents

Preface . vii

1. Introduction . 1
Asynchronous Programming 1
What’s So Great About Asynchronous Code? 2
What Is Async? 2
What Async Does 3
Async Doesn’t Solve Everything 4

2. Why Programs Need to Be Asynchronous . 5
Desktop User Interface Applications 5

An Analogy: The Cafe 6
Web Application Server Code 7

Another Analogy: The Restaurant Kitchen 8
Silverlight, Windows Phone, and Windows 8 9
Parallel Code 9
An Example 10

3. Writing Asynchronous Code Manually . 13
Some Asynchronous Patterns Used in .NET 13
The Simplest Asynchronous Pattern 14
An Introduction to Task 15
The Problem with Manual Asynchrony 16
Converting the Example to Use Manual Asynchronous Code 17

4. Writing Async Methods . 19
Converting the Favicon Example to Async 19
Task and await 20
Async Method Return Types 21
Async, Method Signatures, and Interfaces 22
The return Statement in Async Methods 23

iii

www.it-ebooks.info

http://www.it-ebooks.info/

Async Methods Are Contagious 23
Async Anonymous Delegates and Lambdas 24

5. What await Actually Does . 25
Hibernating and Resuming a Method 25
The State of the Method 26
Context 27
Where await Can’t Be Used 28

catch and finally Blocks 28
lock Blocks 29
LINQ Query Expressions 29
Unsafe Code 30

Exception Capture 30
Async Methods Are Synchronous Until Needed 31

6. The Task-Based Asynchronous Pattern . 33
What the TAP Specifies 33
Using Task for Compute-Intensive Operations 34
Creating a Puppet Task 35
Interacting with Old Asynchronous Patterns 36
Cold and Hot Tasks 38
Up-Front Work 38

7. Utilities for Async Code . 39
Delaying for a Period of Time 39
Waiting for a Collection of Tasks 40
Waiting for Any One Task from a Collection 41
Creating Your Own Combinators 42
Cancelling Asynchronous Operations 43
Returning Progress During an Asynchronous Operation 44

8. Which Thread Runs My Code? . 47
Before the First await 47
During the Asynchronous Operation 48
SynchronizationContext in Detail 48
await and SynchronizationContext 49
The Lifecycle of an Async Operation 49
Choosing Not to Use SynchronizationContext 51
Interacting with Synchronous Code 52

9. Exceptions in Async Code . 55
Exceptions in Async Task-Returning Methods 55
Unobserved Exceptions 57

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Exceptions in Async void Methods 57
Fire and Forget 58
AggregateException and WhenAll 58
Throwing Exceptions Synchronously 59
finally in Async Methods 59

10. Parallelism Using Async . 61
await and locks 61
Actors 62
Using Actors in C# 63
Task Parallel Library Dataflow 64

11. Unit Testing Async Code . 67
The Problem with Unit Testing in Async 67
Writing Working Async Tests Manually 68
Using Unit Test Framework Support 68

12. Async in ASP.NET Applications . 69
Advantages of Asynchronous Web Server Code 69
Using Async in ASP.NET MVC 4 69
Using Async in Older Versions of ASP.NET MVC 70
Using Async in ASP.NET Web Forms 71

13. Async in WinRT Applications . 73
What Is WinRT? 73
IAsyncAction and IAsyncOperation<T> 74
Cancellation 74
Progress 75
Providing Asynchronous Methods in a WinRT Component 75

14. The Async Compiler Transform—in Depth . 77
The stub Method 77
The State Machine Struct 78
The MoveNext Method 80

Your Code 80
Transforming Returns to Completions 80
Get to the Right Place in the Method 80
Pausing the Method for the await 81
Resuming after the Await 81
Completing Synchronously 81
Catching Exceptions 82
More Complicated Code 82

Writing Custom Awaitable Types 83

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Debugger 84

15. The Performance of Async Code . 87
Measuring Async Overhead 87
Async Versus Blocking for a Long-Running Operation 88
Optimizing Async Code for a Long-Running Operation 90
Async Versus Manual Asynchronous Code 90
Async Versus Blocking Without a Long-Running Operation 91
Optimizing Async Code Without a Long-Running Operation 91
Async Performance Summary 92

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Async is a powerful feature added to the C# programming language in C# 5.0. It comes
at a time when performance and parallelization are becoming a major concern of soft-
ware developers. Used correctly, it can help to write programs with performance and
parallelization properties that would have needed reams of code without it. However,
what it does to your program is complex, and there are plenty of aspects to how it works
that aren’t immediately obvious.

Excepting Visual Basic .NET, which added async at the same time as C#, no other
mainstream programming languages offer capabilities equivalent to async. Experience
and guidance in using it in real-world programs is rare. This book is the guidance from
my experience using async, as well as ideas drawn from the designers of C# and com-
puter science theory. More importantly, it shows what async is, how it works, and why
you might want to use it.

Intended Audience
This book is intended for people who are already confident C# programmers. Perhaps
you are looking to understand async, to choose whether to start using it. Perhaps you
have already started using async, but need to learn advanced techniques and caveats
to make best use of it.

Having said that, it doesn’t assume knowledge of other advanced C# features, so the
book is approachable to C# beginners, as well as programmers confident in other
languages.

C# is used in many kinds of application, and async is useful for different reasons in
each of these. For that reason, this book looks at async from both client and server
points of view, including chapters specifically for ASP.NET and WinRT.

How to Read This Book
This book is primarily designed to be read from beginning to end, as a way to learn
about async. It introduces concepts in order, helping you to understand with examples

vii

www.it-ebooks.info

http://www.it-ebooks.info/

before relying on that understanding. This is especially true of the first five chapters of
the book.

The best way to learn is by doing, so I recommend that you try out code examples
yourself. For this, you’ll need a C# development environment, like Microsoft Visual
Studio or MonoDevelop. Take opportunities to extend the examples and work on your
own programs while reading, to understand the ideas fully.

After reading the book, you may want to go back and use the sixth chapter onwards as
a reference for advanced topics in the use of the async. These chapters are organized
into self-contained topics.

• Chapters 6 and 7 focus on techniques to use in async code

• Chapters 8 and 9 focus on complex behaviors of async

• Chapters 10 to 13 discuss situations where async is useful

• Chapters 14 and 15 look at how async works internally

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example

viii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Async in C# 5.0 by Alex Davies (O’Reilly).
Copyright 2012 Alex Davies, 978-1-449-33716-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Async_in_CSharp5.

To comment or ask technical questions about this book, please send email to
bookquestions@oreilly.com.

Preface | ix

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/Async_in_CSharp5
mailto:bookquestions@oreilly.com
http://www.it-ebooks.info/

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I’d like to thank Stephen Toub for reviewing the book, not just technically, but lending
me his experience in getting across parallel computing concepts. His blog was also the
first place I saw a lot of the ideas I’ve explained here. Thank you to Hamish for proof-
reading, and to Katie for bringing me tea while writing.

Thanks also to Rachel Roumeliotis, my editor, and the team at O’Reilly who have been
very helpful while I’ve been writing.

I thank my family, especially my Mum, who looked after me during the recovery from
surgery in which most of the book was written. Finally, I’d like to thank my colleagues
at Red Gate, who encouraged the atmosphere of experimentation that led me to learn
about async at work.

x | Preface

www.it-ebooks.info

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

CHAPTER 1

Introduction

Let’s start with a high-level introduction to the async feature in C# 5.0, and what it
means for you.

Asynchronous Programming
Code is asynchronous if it starts some long-running operation, but then doesn’t wait
while it’s happening. In this way, it is the opposite of blocking code, which sits there,
doing nothing, during an operation.

These long-running operations include:

• Network requests

• Disk accesses

• Delays for a length of time

The distinction is all about the thread that’s running the code. In all widely used pro-
gramming languages, your code runs inside an operating system thread. If that thread
continues to do other things while the long-running operation is happening, your code
is asynchronous. If the thread is still in your code, but isn’t doing any work, it is blocked,
and you’ve written blocking code.

Of course, there is a third strategy for waiting for long-running opera-
tions, called polling, where you repeatedly ask whether the job is
complete. While it has its place for very short operations, it’s usually a
bad idea.

You’ve probably used asynchronous code before in your work. If you’ve ever started a
new thread, or used the ThreadPool, that was asynchronous programming, because the
thread you did it on is free to continue with other things. If you’ve ever made a web
page that a user can access another web page from, that was asynchronous, because
there’s no thread on the web server waiting for the user’s input. That may seem

1

www.it-ebooks.info

http://www.it-ebooks.info/

completely obvious, but think about writing a console app that requests the user’s input
using Console.ReadLine(), and you might be able to imagine an alternative blocking
design for the web. It may have been a terrible design, yes, but it would have been
possible.

The difficulty with asynchronous code is that, quite often, you want to know when an
operation is finished. Then you want to do something else. This is trivially easy to do
in blocking code: you can just write another line of code below the long-running call.
In the asynchronous world, however, this doesn’t work, because your next line will
almost certainly run before the asynchronous operation has finished.

To solve this, we have invented a menagerie of patterns to run some code after a back-
ground operation completes:

• Inserting the code into the background operation, after the main body of the
operation

• Signing up to an event that fires on completion

• Passing a delegate or lambda to execute after completion (a callback)

If that next operation needs to execute on a particular thread (for example, a Win-
Forms or WPF UI thread), you also need to deal with queuing the operation on that
thread. It’s all very messy.

What’s So Great About Asynchronous Code?
Asynchronous code frees up the thread it was started on. That’s really good for lots of
reasons. For one thing, threads take up resources on your machine, and using fewer
resources is always good. Often, there’s only one thread that’s able to do a certain job,
like the UI thread, and if you don’t release it quickly, your app becomes unresponsive.
We’ll talk more about these reasons in the next chapter.

The biggest reason that I’m excited about async is the opportunity it provides to take
advantage of parallel computing. Async makes it reasonable to structure your program
in new ways, with much finer-grain parallelism, without the code becoming compli-
cated and unmaintainable. Chapter 10 will explore this possibility.

What Is Async?
In version 5.0 of the C# language, the compiler team at Microsoft has added a powerful
new feature.

It comes in the form of two new keywords:

• async

• await

2 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

It also relies on some additions and changes to the .NET Framework 4.5 that power it
and make it useful.

Async is a feature of the C# compiler that couldn’t have been imple-
mented by a library. It performs a transformation on your source code,
in much the same way that lambdas and iterators do in earlier versions
of C#.

The feature makes asynchronous programming a lot easier by eliminating the need for
complex patterns that were necessary in previous versions of C#. With it, we can rea-
sonably write entire programs in an asynchronous style.

Throughout the book, I’m going to use the term asynchronous to refer to the general
style of programming that is made easier by the C# feature called async. Asynchronous
programming has always been possible in C#, but it involved a lot of manual work
from the programmer.

What Async Does
The async feature is a way to express what to do after a long-running operation is
completed, one that’s easy to read but behaves asynchronously.

An async method is transformed by the compiler to make asynchronous code look very
similar to its blocking equivalent. Here is a simple blocking method that downloads a
web page.

private void DumpWebPage(string uri)
{
 WebClient webClient = new WebClient();
 string page = webClient.DownloadString(uri);
 Console.WriteLine(page);
}

And here is the equivalent method using async.

private async void DumpWebPageAsync(string uri)
{
 WebClient webClient = new WebClient();
 string page = await webClient.DownloadStringTaskAsync(uri);
 Console.WriteLine(page);
}

They look remarkably similar. But under the hood, they are very different.

The method is marked async. This is required for any methods that use the await
keyword. We’ve also added the suffix Async to the name of the method, to follow
convention.

What Async Does | 3

www.it-ebooks.info

http://www.it-ebooks.info/

The interesting bit is the await keyword. When the compiler sees this, it chops the
method up. Exactly what it does is pretty complicated, so for now I will introduce a
false construct that I find useful as a way to think about simple cases.

1. Everything after await is moved into a separate method.

2. We use a new version of DownloadString called DownloadStringTaskAsync. It does
the same as the original, but is asynchronous.

3. That means we can give it the new second method, which it will call when it fin-
ishes. We do this using some magic that I’ll tell you about later.

4. When the download is done, it will call us back with the downloaded string—
which we can use, in this case, to write to the console.

private void DumpWebPageAsync(string uri)
{
 WebClient webClient = new WebClient();
 webClient.DownloadStringTaskAsync(uri) <- magic(SecondHalf);
}

private void SecondHalf(string awaitedResult)
{
 string page = awaitedResult;
 Console.WriteLine(page);
}

What happens to the calling thread when it runs this code? When it reaches the call to
DownloadStringTaskAsync, the download gets started. But not in this thread. In this
thread, we reach the end of the method and return. What the thread does next is up to
our caller. If it is a UI thread, it will go back to processing user actions. Otherwise, its
resources might be released. That means we’ve written asynchronous code!

Async Doesn’t Solve Everything
The async feature has deliberately been designed to look as similar to blocking code as
possible. We can deal with long-running or remote operations almost as if they were
local and fast, but keep the performance benefits of calling them asynchronously.

However, it’s not designed to let you forget that there are background operations and
callbacks happening. You need to be careful with lots of things that behave differently
when you use async, including:

• Exceptions and try..catch...finally blocks

• Return values of methods

• Threads and context

• Performance

Without understanding what’s really happening, your program will fail in surprising
ways, and you won’t understand the error messages or the debugger to be able to fix it.

4 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Why Programs Need to Be
Asynchronous

Asynchronous programming is important and useful, but the reason that it’s important
varies, depending on what kind of application you’re writing. Some of the benefits exist
everywhere, but matter most in a kind of application that you may never write. If this
applies to you, do read the whole chapter, as the background knowledge will help you
to understand the whole context.

Desktop User Interface Applications
Desktop applications have one primary performance requirement. They need to feel
responsive to the user. Human Computer Interaction (HCI) studies have shown that
users don’t notice a slow application, as long as the interface is responsive, and pref-
erably has an animated progress indicator.

People get frustrated with the program when it freezes up. Freezes are usually the result
of the program being unable to respond to user input during a long-running operation,
whether that’s during a slow computation, or during some input/output (IO) opera-
tion, like a network access.

The UI frameworks that you might use from C# all operate using a single UI thread.
This includes:

• WinForms

• WPF

• Silverlight

That UI thread is the only one that can control the contents of a particular window. It
is also the only thread that checks for user actions and responds to them. If the thread
is ever busy or blocked for more than a few tens of milliseconds, users will notice that
the application feels sluggish.

5

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous code, even written manually, means that the UI thread can return to its
primary job of checking the message queue for user events, and responding to them. It
can also perform progress animations, and in recent versions of Windows, mouse hover
animations, which are both important visual cues to users that give a good impression
of the responsiveness of the application.

The reason that all common UI frameworks use only one thread is to
simplify synchronization. If there were many threads, one could try to
read the width of a button, while another is in the process of laying out
the controls. To avoid them conflicting, you’d need to use locking heav-
ily, which would reduce the performance to the same as if there were
only one thread.

An Analogy: The Cafe
I’d like to use an analogy to help with an intuitive grasp of the issues involved. If you
feel you already understand, feel free to skip to the next section.

Imagine there’s a small cafe, which sells customers toast for their breakfast. The only
staff member is the owner. He is very concerned about customer service, but hasn’t
learned about asynchronous techniques.

The UI thread models the owner of the cafe very closely. In the same way that work
inside a computer must be done by a thread, only cafe staff can do work at the cafe. In
this case, there’s only one staff member, just like there’s only one UI thread.

The first customer asks the owner for a slice of toast. The owner gets the bread and
starts the toaster. Then he watches the toaster while it cooks the toast. The customer
asks where she can find some butter, but the owner ignores her, as he’s blocked,
watching the toaster. Five minutes later, the toast is done, and he brings it to the cus-
tomer. By this time, a queue has built up, and the customer is annoyed about being
ignored. Not ideal.

Now, lets see if we can teach the cafe owner how to be asynchronous.

First, he needs to make sure his toaster can operate asynchronously. When writing
asynchronous code, we need to ensure that the long-running operation we are calling
is able to call us back when it’s done. In the same way, the toaster must have a timer,
and must pop up the toast loudly when it’s cooked, so he notices it.

The next thing is for him to ignore the toaster once he’s started it. He should go back
to serving the customers. In the same way, our asynchronous code must return once
the long-running operation is started, so the UI thread can respond to user actions.
There are two reasons for this:

6 | Chapter 2: Why Programs Need to Be Asynchronous

www.it-ebooks.info

http://www.it-ebooks.info/

• It feels more responsive to the user—the customer can ask for butter and isn’t
ignored

• The user can start another operation simultaneously—the next customer can also
ask for their order to be started

The cafe owner can now process multiple customers at the same time, limited only by
the number of toasters he has, and the time it takes him to fetch and carry the toast.
But this comes with its own problems: he now finds it hard to remember which slices
of toast are intended for which customers. In fact, the UI thread has no memory at all
of which operations it’s waiting for once it returns to processing user events.

So we need to attach a callback to the jobs as we start them, to remind us what to do
when they are finished. For the cafe owner, this is as simple as writing the name of the
customer on a label clipped to the toast. We may need something more complicated,
and in general we’d like to be able to provide full instructions for what we need to do
once the job is done.

With all of those things in place, the cafe owner is now fully asynchronous, and business
booms. The customer experience is much better. There’s less waiting, and the service
feels much more responsive. I hope the analogy has helped with your intuition of why
asynchrony is so important in UI applications.

Web Application Server Code
ASP.NET web servers don’t have the same hard limit of one thread as UI code does.
That said, there are still benefits to using asynchronous code. Long-running operations,
especially remote database queries, are very common in web application code.

Depending on your version of IIS, there will be a limit on either the total number of
threads used to process web requests, or the total number of concurrent requests being
handled. If your requests spend most of their time waiting for a database query, it may
seem a good idea to increase the number of simultaneous requests to increase the
throughput your server can handle.

When a thread is blocked, waiting for something, it doesn’t use any CPU time. How-
ever, don’t assume that means it isn’t using any of your server’s resources. In fact,
threads cause two significant overheads, even when they’re blocked:

Memory
Each managed thread reserves around a megabyte of virtual memory on Windows.
This is no problem at all if you have a few tens of threads, but can easily get out of
hand if you start using hundreds of threads. If the memory gets swapped out to
disk, resuming the threads becomes slow.

Web Application Server Code | 7

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduler overhead
The operating system’s scheduler is responsible for choosing which thread should
be executed on which CPU, and when. Even when threads are blocked, the sched-
uler must consider them, to find whether they’re become unblocked. This slows
down context switches, and can slow the entire system.

Between them, these overheads can add to the load on your server, increasing latency
and decreasing throughput.

Remember: the main characteristic of asynchronous code is that the thread that started
a long-running operation is released to do other things. In the case of ASP.NET code,
this thread is from the thread pool, so it is returned to the thread pool during the long-
running operation. It can then process other requests, so fewer threads are needed to
process the same number of requests.

Another Analogy: The Restaurant Kitchen
A web server is a close model of a restaurant. Many customers order food, and the
kitchen tries to satisfy them as soon as it can.

Our kitchen has many chefs, with each chef representing a thread. They cook the dishes
that the customers order, but at points during the preparation, each dish just needs to
be in the oven for a while, and the chef has nothing to do. This mirrors the way that
web requests usually need to make a database query that the web server has no part in.

In a blocking implementation of the kitchen, the chef will sit in front of the oven, waiting
for the dish to be cooked. To model a thread exactly, these chefs have an odd contract
where they aren’t paid while they are waiting for food to cook, because a thread doesn’t
use CPU time when it is blocked. Maybe they read a newspaper.

But even if we don’t have to pay them, and we can hire a new chef for every dish we
need to cook, waiting chefs still take up space in the kitchen. We can’t fit more than a
few tens of chefs in the kitchen before it becomes hard to move around, and everyone’s
work slows down.

Of course, the asynchronous system works much better. Each time food is put in the
oven, the chef notes down what dish it is, and what stage of preparation it’s at, then
finds a new task to do. When the time in the oven is done, any chef can pick the dish
up and continue preparing it.

It’s this efficient system that’s so powerful in web servers. Only a few threads can man-
age a number of simultaneous requests that would have required hundreds before, or
would have just been unfeasible because of the overheads. In fact, some web frame-
works, notably node.js, reject the idea of multiple threads altogether, opting to use a
single thread to process all the requests asynchronously. They can often handle more
requests with one thread than a multithreaded, but blocking, system can handle in
total. In the same way, one well-organized chef in an empty kitchen can cook more

8 | Chapter 2: Why Programs Need to Be Asynchronous

www.it-ebooks.info

http://www.it-ebooks.info/

food than hundreds of chefs that spend all their time either tripping over each other or
reading a newspaper.

Silverlight, Windows Phone, and Windows 8
The designers of Silverlight knew the benefits of asynchronous code in UI applications.
So they decided to encourage everyone to write asynchronous code. They did this by
removing most of the synchronous APIs from the framework. So, for example, web
requests only exist as asynchronous calls.

Asynchronous code is contagious. If you call an asynchronous API, your code naturally
ends up asynchronous as well. So in Silverlight, you must write asynchronous code—
there is no option. There may be a Wait method, or some other way to consume an
asynchronous API synchronously, by blocking while waiting to be called back. But if
you do that, you lose all the advantages I’ve spoken about.

Silverlight for Windows Phone is, like its full name suggests, a type of Silverlight. Extra
APIs are available, which wouldn’t have been safe in Silverlight’s in-browser environ-
ment, for example TCP sockets. Again though, only asynchronous versions of the APIs
exist, encouraging you to write asynchronous code. If anything, it’s more important to
use asynchronous code on a mobile device, because resources are so scarce. Starting
extra threads can have a serious effect on battery life.

Finally, despite not being technically related to Silverlight, Windows 8 applications
take the same approach. There are a lot more APIs available, but only asynchronous
versions of any APIs that might take longer than 50ms to complete are provided.

Parallel Code
Computers are being made with an increasing number of processor cores, all running
independently of each other. Programs need to be able to take advantage of those cores,
but any memory used by those programs can’t be written from multiple cores at once,
or the memory will be corrupted.

Maybe we’ll get better at using a pure (sometimes referred to as func-
tional) style of programming, which doesn’t manipulate state in mem-
ory, but deals with immutable values. That will help take advantage of
parallelism, but is a bad fit for some programs. User interfaces need
state. Databases are state.

The standard solution is to use mutual exclusion locks whenever multiple cores could
potentially access the same memory. But this comes with its own problems. Your code
will often take one lock, then make a method call or raise an event that takes another
lock. Usually, it wasn’t necessary to hold both locks at once, but the code was simpler.

Parallel Code | 9

www.it-ebooks.info

http://www.it-ebooks.info/

This is false contention for the locks, and means that, overall, more threads end up
waiting for locks when they could instead be doing useful work. In some situations,
two threads both wait for a lock that the other holds, causing a deadlock. These bugs
are hard to predict, hard to reproduce, and often hard to fix.

One of the most promising solutions is the actors model of computation. This is a design
where each piece of writable memory can only exist inside one actor. The only way to
use that memory is to send messages to that actor, which processes them, one at a time,
and might reply with another message. This is exactly asynchronous programming.
The operation of asking an actor for something is a typical asynchronous operation,
because we can continue doing other things until the reply message arrives. And that
means you can use async to do it, which we’ll see in Chapter 10.

An Example
We’ll look at an example of a desktop UI application that is badly in need of converting
to an asynchronous style. The source is available online. I recommend you follow along
if you can, so get a copy (you can download it as a zip file if you don’t use Mercurial)
and open it in Visual Studio. Make sure to get the default branch, which is the syn-
chronous version.

Run the program, and you’ll see a window with a button. If you press the button, it
will display the icons from some popular websites. It does this by downloading a file
called favicon.ico that most websites contain (Figure 2-1).

Figure 2-1. Favicon browser running

Let’s take a look at the code. The important part is the method that downloads the
favicon and adds it to a WPF WrapPanel in the window.

private void AddAFavicon(string domain)
{
 WebClient webClient = new WebClient();
 byte[] bytes = webClient.DownloadData("http://" + domain + "/favicon.ico");
 Image imageControl = MakeImageControl(bytes);
 m_WrapPanel.Children.Add(imageControl);
}

10 | Chapter 2: Why Programs Need to Be Asynchronous

www.it-ebooks.info

https://bitbucket.org/alexdavies74/faviconbrowser
http://www.it-ebooks.info/

You’ll notice that this implementation is completely synchronous. The thread blocks
while the icon is downloading. You’ll probably also have noticed that the window
becomes unresponsive for a few seconds when you press the button. As you know,
that’s because the UI thread is blocked while downloading all the icons, and can’t return
to process user events.

We’ll use this example in the following chapters to walk through converting a
synchronous program to an asynchronous one.

An Example | 11

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Writing Asynchronous Code Manually

In this chapter, we’ll talk about writing asynchronous code without the help of C# 5.0
and async. In a way, this is going over techniques you’ll never have to use, but it’s
important to help understand what’s really happening behind the scenes. Because of
this, I’ll go over the examples quickly, only drawing out the points that are helpful in
understanding.

Some Asynchronous Patterns Used in .NET
As I mentioned before, Silverlight only provides asynchronous versions of APIs like web
access. Here is an example of how you might download a web page and display it:

private void DumpWebPage(Uri uri)
{
 WebClient webClient = new WebClient();
 webClient.DownloadStringCompleted += OnDownloadStringCompleted;
 webClient.DownloadStringAsync(uri);
}

private void OnDownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs eventArgs)
{
 m_TextBlock.Text = eventArgs.Result;
}

This kind of API is called the Event-based Asynchronous Pattern (EAP). The idea is that
instead of a single synchronous method to download the page, which blocks until it’s
done, one method and one event are used. The method looks just like the synchronous
version, except it has a void return type. The event has a specially defined EventArgs
type, which contains the value retrieved.

We sign up to the event immediately before calling the method. The method returns
immediately, of course, because this is asynchronous code. Then, at some point in the
future, the event will fire, and we can deal with it.

13

www.it-ebooks.info

http://www.it-ebooks.info/

This pattern is obviously messy to use, not least because you have to split what would
otherwise be a nice simple sequence of instructions into two methods. On top of that,
the fact that you’ve signed up to an event adds a complication. If you go on to use the
same instance of WebClient for another request, you might not expect that the original
event will still be attached, and the handler will run again.

Another asynchronous pattern that features in .NET involves the IAsyncResult inter-
face. One example is the method on Dns that looks up the IP address for a hostname,
BeginGetHostAddresses. The design requires two methods, one called BeginMethod
Name which starts the operation, and one called EndMethodName which you use in the
callback to get the result.

private void LookupHostName()
{
 object unrelatedObject = "hello";
 Dns.BeginGetHostAddresses("oreilly.com", OnHostNameResolved, unrelatedObject);
}

private void OnHostNameResolved(IAsyncResult ar)
{
 object unrelatedObject = ar.AsyncState;
 IPAddress[] addresses = Dns.EndGetHostAddresses(ar);

 // Do something with addresses
 ...
}

At least this design doesn’t suffer from the problems with leftover event handlers.
However, it still adds extra complexity to the API, with two methods instead of one,
and I find it unnatural.

Both of these patterns require you to split your procedure over two methods. The
IAsyncResult pattern allows you to pass something from your first method into the
second, as I have done with the string "hello". But the way it does it is messy, requiring
you to pass something even if you didn’t need to, and forcing you to cast it back from
an object. The EAP also supports passing an object, in a similarly messy way.

Passing context between the methods is a general problem with asynchronous patterns.
We’ll see in the next section that a lambda is a solution, and you can use it in any of
these situations.

The Simplest Asynchronous Pattern
Arguably the simplest code that has asynchronous behavior, without using async, in-
volves passing a callback as a parameter to the method:

void GetHostAddress(string hostName, Action<IPAddress> callback)

I find this easier to use than the other patterns.

14 | Chapter 3: Writing Asynchronous Code Manually

www.it-ebooks.info

http://www.it-ebooks.info/

private void LookupHostName()
{
 GetHostAddress("oreilly.com", OnHostNameResolved);
}

private void OnHostNameResolved(IPAddress address)
{
 // Do something with address
 ...
}

Instead of using two methods, as I mentioned previously, you can use an anonymous
method or lambda expression for the callback. This has the important benefit of
allowing you to access variables from the first part of the method.

private void LookupHostName()
{
 int aUsefulVariable = 3;
 GetHostAddress("oreilly.com", address =>
 {
 // Do something with address and aUsefulVariable
 ...
 });
}

The lambda is a little hard to read, though, and often, if you are using multiple asyn-
chronous APIs, you will need many lambdas nested within each other. Your code be-
comes deeply indented very quickly, and increasingly hard to work with.

The disadvantage of this simple approach is that any exceptions are no longer thrown
to the caller. In the patterns used by .NET, the call to EndMethodName or getting the
Result property would rethrow the exception, so the originating code could deal with
it. Instead, they could end up in the wrong place, or not handled at all.

An Introduction to Task
The Task Parallel Library was introduced in version 4.0 of the .NET Framework. Its
most important class is Task, which represents an ongoing operation. A generic version,
Task<T>, acts as a promise of a value (of type T) that will be available in the future, once
the operation is done.

The async feature of C# 5.0 uses Task extensively, as we’ll discuss later. However, even
without async, you can use Task, and especially Task<T> to write asynchronous pro-
grams. To do this, you start the operation, which will return a Task<T>. Then use the
ContinueWith method to register your callback.

An Introduction to Task | 15

www.it-ebooks.info

http://www.it-ebooks.info/

private void LookupHostName()
{
 Task<IPAddress[]> ipAddressesPromise = Dns.GetHostAddressesAsync("oreilly.com");
 ipAddressesPromise.ContinueWith(_ =>
 {
 IPAddress[] ipAddresses = ipAddressesPromise.Result;

 // Do something with address
 ...
 });
}

The advantage of Task is that there is only one method required on Dns, making the API
cleaner. All the logic related to the asynchronous behavior of the call can be inside the
Task class, so that it need not be duplicated in every asynchronous method. This logic
can do important things, like dealing with exceptions and SynchronizationContexts.
These, as we’ll discuss in Chapter 8, are useful for running the callback on a particular
thread (for example, the UI thread).

On top of that, Task gives us the ability to work with asynchronous operations in an
abstract way. We can use this composability to write utilities which work with Tasks
to provide some behavior which is useful in a lot of situations. We’ll see more about
these utilities in Chapter 7.

The Problem with Manual Asynchrony
As we’ve seen, there are many ways to implement asynchronous programs. Some are
neater than others. But hopefully you’ve seen they share one flaw. The procedure that
you are intending to write has to be split into two methods: the actual method and the
callback. Using an anonymous method or lambda for the callback mitigates some of
this problem, but your code is left overly indented and hard to follow.

There’s another problem here. We’ve spoken about methods that make one asynchro-
nous call, but what happens if you need to make more than one? Even worse, what
happens if you need to call asynchronous methods in a loop? Your only option is a
recursive method, which is much harder to read than a normal loop.

private void LookupHostNames(string[] hostNames)
{
 LookUpHostNamesHelper(hostNames, 0);
}

private static void LookUpHostNamesHelper(string[] hostNames, int i)
{
 Task<IPAddress[]> ipAddressesPromise = Dns.GetHostAddressesAsync(hostNames[i]);
 ipAddressesPromise.ContinueWith(_ =>
 {
 IPAddress[] ipAddresses = ipAddressesPromise.Result;

16 | Chapter 3: Writing Asynchronous Code Manually

www.it-ebooks.info

http://www.it-ebooks.info/

 // Do something with address
 ...

 if (i + 1 < hostNames.Length)
 {
 LookUpHostNamesHelper(hostNames, i + 1);
 }
 });
}

Yuck.

One more problem caused by manual asynchronous programming in any of theses
styles lies in consuming the asynchronous code that you’ve written. If you write some
asynchronous, then want to use it from elsewhere in your program, you’ll have to
provide an asynchronous API to use. If consuming this kind of asynchronous API
seemed difficult and messy, providing one is doubly so. And asynchronous code is
contagious, so not only do you have to deal with asynchronous APIs, but so does your
caller, and their caller, until the entire program is a mess.

Converting the Example to Use Manual Asynchronous Code
Recall that in “An Example” on page 10, we discussed a WPF UI app that was unre-
sponsive because it downloaded icons from websites while blocking the UI thread.
We’ll now look at making it asynchronous using the manual techniques in this chapter.

The first task is to find an asynchronous version of the API I was using (WebClient.Down
loadData). As we already saw, WebClient uses the Event-based Asynchronous Pattern
(EAP), so we can sign up an event handler for the callback, then start the download.

private void AddAFavicon(string domain)
{
 WebClient webClient = new WebClient();
 webClient.DownloadDataCompleted += OnWebClientOnDownloadDataCompleted;
 webClient.DownloadDataAsync(new Uri("http://" + domain + "/favicon.ico"));
}

private void OnWebClientOnDownloadDataCompleted(object sender,
 DownloadDataCompletedEventArgs args)
{
 Image imageControl = MakeImageControl(args.Result);
 m_WrapPanel.Children.Add(imageControl);
}

Of course, our logic that really belongs together needs to be split into two methods. I
prefer not to use a lambda with the EAP because the lambda would appear before the
actual call to start the download, which I find unreadable.

Converting the Example to Use Manual Asynchronous Code | 17

www.it-ebooks.info

http://www.it-ebooks.info/

This version of the example is also available online, under the branch manual. If you
run it, not only does the UI remain responsive, but the icons appear gradually. Because
of that, we’ve introduced a bug. Now, because all the download operations are started
together (before any have finished) the icons are ordered by how quickly each down-
loaded, rather than by the order in which I requested them. If you’d like to check that
you understand how to do manual asynchronous coding, I recommend fixing this bug.
One solution is available under the branch orderedManual, and involves transforming
the loop to a recursive method. More efficient solutions are also possible.

18 | Chapter 3: Writing Asynchronous Code Manually

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Writing Async Methods

Now we know how great asynchronous code is, but how hard it is to write? It’s time
to look at the C# 5.0 async feature. As we saw previously in “What Async
Does” on page 3, a method marked async is allowed to contain the await keyword.

private async void DumpWebPageAsync(string uri)
{
 WebClient webClient = new WebClient();
 string page = await webClient.DownloadStringTaskAsync(uri);
 Console.WriteLine(page);
}

The await expression in this example transforms the method, so it pauses during the
download, then resumes when the download is done. This transformation makes the
method asynchronous. In this chapter, we’ll explore writing async methods like this
one.

Converting the Favicon Example to Async
We’ll now modify the favicon browser example from earlier to make use of async. If
you can, open the original version of the example (the default branch) and try to con-
vert it by adding async and await keywords before reading any further.

The important method is AddAFavicon, which downloads the icon, then adds it to the
UI. We want to make this method asynchronous, so that the UI thread is free to respond
to user actions during the download. The first step is to add the async keyword to the
method. It appears in the method signature in the same way that the static keyword
does.

Then, we need to wait for the download using the await keyword. In terms of C#
syntax, await acts as a unary operator, like the ! not operator, or the (type) cast oper-
ator. It is placed to the left of an expression and means to wait for that expression
asynchronously.

19

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, the call to DownloadData must be changed to instead call the asynchronous
version, DownloadDataTaskAsync.

An async method isn’t automatically asynchronous. Async methods just
make it easier to consume other asynchronous methods. They start
running synchronously, until they call an asynchronous method and
await it. When they do so, they necessarily become asynchronous them-
selves. Sometimes, an async method never awaits anything, in which
case it runs synchronously.

private async void AddAFavicon(string domain)
{
 WebClient webClient = new WebClient();
 byte[] bytes = await webClient.DownloadDataTaskAsync("http://" + domain + "/
favicon.ico");
 Image imageControl = MakeImageControl(bytes);
 m_WrapPanel.Children.Add(imageControl);
}

Compare this to the other two versions of this code we’ve looked at. It looks much more
like the original synchronous version of the code. There’s no extra method, just a little
extra code in the same structure. However, it behaves much more like the asynchronous
version that we wrote in “Converting the Example to Use Manual Asynchronous
Code” on page 17.

Task and await
Let’s break down the await expression we’ve written. Here is the signature of the
WebClient.DownloadStringTaskAsync method:

Task<string> DownloadStringTaskAsync(string address)

The return type is Task<string>. As I said in “An Introduction to Task” on page 15, a
Task represents an ongoing operation, and its subclass Task<T> represents an operation
that will have a result of type T at some point in the future. You can think of Task<T>
as a promise of a T when the long-running operation completes.

Task and Task<T> can both represent asynchronous operations, and both have the ability
to call back your code when the operation is done. To use that ability manually, you
use their ContinueWith methods to pass a delegate containing the code to execute when
the long-running operation is done. await uses the same ability to execute the rest of
your async method in the same way.

If you apply await to a Task<T>, it becomes an await expression, and the whole expres-
sion has type T. That means you can assign the result of awaiting to a variable and use
it in the rest of the method, as we’ve seen in the examples. However, when you await
a non-generic Task, it becomes an await statement, and can’t be assigned to anything,

20 | Chapter 4: Writing Async Methods

www.it-ebooks.info

http://www.it-ebooks.info/

just like a call to a void method. This makes sense, as a Task doesn’t promise a result
value, it only represents the operation itself.

await smtpClient.SendMailAsync(mailMessage);

There is nothing stopping us from splitting up the await expression, so we can access
the Task directly, or do something else, before awaiting it.

Task<string> myTask = webClient.DownloadStringTaskAsync(uri);
// Do something here
string page = await myTask;

It is important to fully understand the implications of this. The method DownloadString
TaskAsync is executed on the first line. It begins executing synchronously, in the current
thread, and once it has started the download, it returns a Task<string>, still in the
current thread. It’s only later when we await that Task<string> that the compiler does
something special. This is all still true if you write the await on the same line as the call
to the asynchronous method.

The long-running operation starts as soon as the call to DownloadStringTaskAsync is
made, which gives us a very simple way to perform multiple asynchronous operations
concurrently. We can just start multiple operations, keeping all the Tasks, then await
them all afterwards.

Task<string> firstTask = webClient1.DownloadStringTaskAsync("http://oreilly.com");
Task<string> secondTask = webClient2.DownloadStringTaskAsync("http://simple-
talk.com");
string firstPage = await firstTask;
string secondPage = await secondTask;

This is a dangerous way to await multiple Tasks, if they may throw
exceptions. If both operations throw an exception, the first await will
propagate its exception, which means secondTask is never awaited. Its
exception will not be observed, and depending on .NET version and
settings, may be lost or even rethrown on an unexpected thread, termi-
nating the process. We’ll see better ways to do this in Chapter 7.

Async Method Return Types
There are three return types that a method marked async may have:

• void

• Task

• Task<T> for some type T

No other return type is allowed because async methods in general aren’t finished when
they return. Typically, an async method will await a long-running operation, which
means that the method returns quickly, but will resume in the future. That means no

Async Method Return Types | 21

www.it-ebooks.info

http://www.it-ebooks.info/

sensible result value is available when the method returns. The result will be available
later.

I’ll make the distinction between the return type of a method—for
example, Task<string>—and the result type that the programmer ac-
tually intends to give to the caller, which in this case is string. In normal
non-async methods, the return type and the result type are always the
same, but the difference is important for async methods.

It’s obvious that void is a reasonable choice of return type in an asynchronous situation.
A async void method is a “fire and forget” asynchronous operation. The caller can
never wait for any result, and can’t know when the operation completes or whether it
was successful. You should use void when you know that no caller will ever need to
know when the operation is finished or whether it succeeded. In practice, this means
that void is used very rarely. The most common use of async void methods is in the
boundary between async code and other code, for example a UI event handler must
return void.

Async methods that return Task allow the caller to wait for the operation to finish, and
propagate any exception that happened during the asynchronous operation. When no
result value is needed, an async Task method is better than an async void method
because it allows the caller to also use await to wait for it, making ordering and excep-
tion handling easier.

Finally, async methods that return Task<T>, for example Task<string>, are used when
the asynchronous operation has a result value.

Async, Method Signatures, and Interfaces
The async keyword appears in the declaration of a method, just like the public or
static keywords do. Despite that, async is not part of the signature of the method, in
terms of overriding other methods, implementing interfaces, or being called.

The only effect that the async keyword has is on the compilation of the method to which
it is applied, unlike the other keywords that are applied to a method, which change
how it interacts with the outside world. Because of this, the rules around overriding
methods and implementing interfaces completely ignore the async keyword.

class BaseClass
{
 public virtual async Task<int> AlexsMethod()
 {
 ...
 }
}

class SubClass : BaseClass

22 | Chapter 4: Writing Async Methods

www.it-ebooks.info

http://www.it-ebooks.info/

{
 // This overrides AlexsMethod above
 public override Task<int> AlexsMethod()
 {
 ...
 }
}

Interfaces can’t use async in a method declaration, simply because there is no need. If
an interface requires that a method returns Task, the implementation may choose to
use async, but whether it does or not is a choice for the implementing method. The
interface doesn’t need to specify whether to use async or not.

The return Statement in Async Methods
The return statement has different behavior in an async method. Remember that in a
normal non-async method, use of the return statement depends on the return type of
the method:

void methods
return statements must just be return;, and are optional

Methods that return a type T
return must have an expression of type T (for example return 5+x;) and must exist
at the end of the method on all code paths

In a method marked async, the rules apply in different situations:

void methods and methods that return Task
return statements must just be return; and are optional

Methods that return Task<T>
return must have an expression of type T and must exist at the end of the method
on all code paths

In async methods, the return type of the method is different from the type of the ex-
pression found in the return statement. The compiler transformation can be thought
to wrap up the value you return in a Task<T> before giving it to the caller. Of course, in
reality, the Task<T> is created immediately, and only filled with your result value later,
once any long-running operation is done.

Async Methods Are Contagious
As we’ve seen, the best way to consume a Task returned by an asynchronous API is to
await it in an async method. When you do this, your method will typically return
Task as well. To get the benefit of the asynchronous style, the code that calls your
method must not block waiting for your Task to complete, and so your caller will prob-
ably also await you.

Async Methods Are Contagious | 23

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s an example of a helper method I’ve written that gets the number of characters
on a web page, and returns them asynchronously.

private async Task<int> GetPageSizeAsync(string url)
{
 WebClient webClient = new WebClient();
 string page = await webClient.DownloadStringTaskAsync(url);
 return page.Length;
}

To use it, I need to write another async method, which returns its result asynchronously
as well:

private async Task<string> FindLargestWebPage(string[] urls)
{
 string largest = null;
 int largestSize = 0;
 foreach (string url in urls)
 {
 int size = await GetPageSizeAsync(url);

 if (size > largestSize)
 {
 size = largestSize;
 largest = url;
 }
 }

 return largest;
}

In this way, we end up writing chains of async methods, each awaiting the next. Async
is a contagious programming model, and it can easily pervade a whole codebase. But I
think that because async methods are so easy to write, this isn’t a problem at all.

Async Anonymous Delegates and Lambdas
Ordinary named methods can be async, and the two forms of anonymous methods can
equally be async. The syntax is very much like normal methods. Here is how to make
an asynchronous anonymous delegate:

Func<Task<int>> getNumberAsync = async delegate { return 3; };

And here is an async lambda:

Func<Task<string>> getWordAsync = async () => "hello";

All the same rules apply in these as in ordinary async methods. You can use them to
keep code concise, and to capture closures, in exactly the same way you would in non-
async code.

24 | Chapter 4: Writing Async Methods

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

What await Actually Does

There are two ways to think about the async feature of C# 5.0, and in particular what
happens at an await keyword:

• As a language feature, which has a defined behavior that you can learn

• As a compile-time transformation, that is syntactic sugar for a more complex piece
of C# that doesn’t use async

Both are completely true; they are two sides of the same coin. In this chapter, we will
concentrate on the first way of looking at async. In Chapter 14, we’ll look at it from
the other point of view, which is more complex but provides some details that will
make debugging and performance considerations more clear.

Hibernating and Resuming a Method
When the execution of your program reaches an await keyword, we want two things
to happen:

• The current thread executing your code should be released to make your code
asynchronous. That means from a normal, synchronous, point of view, your
method should return.

• When the Task that you awaited is complete, your method should continue from
where it used to be, as if it hadn’t returned earlier.

To achieve this behavior, your method must pause when it reaches an await, and then
resume at a later point.

I think of this process as a small scale version of when you hibernate a computer (S4
sleep). The current state of the method is stored away, and the method exits completely.
When a computer hibernates, the dynamic, running state of the computer is saved to
disk, and it turns completely off. Just as you can unplug the power supply from a
hibernated computer with no ill effects, an awaiting method uses no resources other
than a little memory, as the thread that executed it has been released.

25

www.it-ebooks.info

http://www.it-ebooks.info/

To take the analogy further, a blocking method is much more like when
you suspend a computer (S3 sleep). It uses fewer resources, but funda-
mentally it’s still running.

Ideally, the programmer shouldn’t be able to detect that this hibernation has taken
place. Despite the fact that hibernating and resuming a method mid-execution is a fairly
complex operation, C# will make sure that your code is resumed as if it nothing had
happened.

The State of the Method
Just to make it clear exactly how much work C# is doing for you when you use
await, I’d like to think about all the details it needs to remember about the state of your
method.

First, the values of all the local variables of your method are remembered. This includes
the values of:

• The parameters of your method

• Any variables you’ve defined which are in scope

• Any other variables, for example loop counters

• The this variable, if your method is non-static. In that way, the member variables
of your class are available when the method resumes.

All of these are stored in an object on the .NET garbage collected heap. So, when you
use await, an object is allocated, which uses some resources, but won’t cause a perfor-
mance problem in most circumstances.

C# also remembers where in the method the await was reached. This can be stored
using a number to represent which of the await keywords in the method we are at
currently.

There’s no restriction on how await expressions can be used. For example, they can be
used as part of a larger expression, perhaps involving more than one await:

int myNum = await AlexsMethodAsync(await myTask, await StuffAsync());

This adds extra requirements to remember the state of the rest of the expression while
awaiting something. In this example, the result of await myTask needs to be remembered
while we run await StuffAsync(). .NET intermediate language (IL) stores this kind of
sub-expression on a stack, so that stack is what the await keyword needs to store.

On top of this, when the program reaches the first await in a method, the method
returns. Unless it is an async void method, a Task is returned at that point, so the caller
can wait for us to complete somehow. C# must also store a way to manipulate that
returned Task, so that when our method is done, the Task can become completed, and

26 | Chapter 5: What await Actually Does

www.it-ebooks.info

http://www.it-ebooks.info/

execution can move back up the asynchronous chain of methods. The exact mechanism
for this is the subject of Chapter 14.

Context
As part of its effort to make the process of awaiting as transparent as possible, C#
captures various kinds of context at an await, which are then restored when the method
is resumed.

The most important of these is synchronization context, which can be used to resume
the method on a particular type of thread, amongst other things. This is particularly
important for UI applications, which can only manipulate their UI on the correct
thread. Synchronization contexts are a complex topic, and Chapter 8 contains more
details.

Other kinds of context are also captured from the calling thread. These are all controlled
via a class of the same name, so I’ll list some important types of context by their classes
here:

ExecutionContext
This is the parent context, all the other contexts are a part of it. It is the system
that .NET features like Task use to capture and propagate context, but has no
behavior of its own.

SecurityContext
This is where we find any security information that would normally be confined
to the current thread. If your code needs to run as a particular user, you may be
impersonating that user, or ASP.NET may be doing impersonation for you. In that
case, the impersonation is stored in the SecurityContext

CallContext
This allows the programmer to store custom data that should be available for the
lifetime of a logical thread. Although considered bad practice in a lot of situations,
it can avoid excessive numbers of method parameters as various context is passed
around the program. LogicalCallContext is a related system that works across
AppDomains.

It’s worth noting that thread local storage, which is similar in purpose
to CallContext, doesn’t work in asynchronous situations, because the
thread is released during the long-running operation, and may be used
for other things. Your method could be resumed on a completely
different thread.

Context | 27

www.it-ebooks.info

http://www.it-ebooks.info/

C# will restore these types of context when your method is resumed. Restoring the
context has some cost, so, for example, a program that makes heavy use of async could
run a lot slower if it also uses impersonation. I advise avoiding .NET features that create
context unless you know it is really necessary.

Where await Can’t Be Used
await can be used in any method marked async, at most places in the method. But there
are a few places where you can’t use await. I’ll explain why it wouldn’t make sense to
allow await in these situations.

catch and finally Blocks
While is perfectly allowed to use await in a try block, it is not valid C# to use it inside
a catch or finally block. Often in catch blocks, and always in finally blocks, the
exception is still in the process of unwinding the stack, and will be rethrown later in
the block. If an await were used before that point, the stack would be different, and the
behavior of the rethrow would be very hard to define.

Remember that instead of using await in a catch block, it is always possible to use it
after the catch block, by using either a return statement or a bool variable to remember
whether the original operation threw an exception. For example, if you wanted to write
this invalid C#:

try
{
 page = await webClient.DownloadStringTaskAsync("http://oreilly.com");
}
catch (WebException)
{
 page = await webClient.DownloadStringTaskAsync("http://oreillymirror.com");
}

You could instead write this:

bool failed = false;
try
{
 page = await webClient.DownloadStringTaskAsync("http://oreilly.com");
}
catch (WebException)
{
 failed = true;
}

if (failed)
{
 page = await webClient.DownloadStringTaskAsync("http://oreillymirror.com");
}

28 | Chapter 5: What await Actually Does

www.it-ebooks.info

http://www.it-ebooks.info/

lock Blocks
A lock is a way for the programmer to prevent other threads accessing the same objects
as the current thread at the same time. Because asynchronous code generally releases
the thread it started on, and may be called back an indeterminate amount of time later
on a thread which may be different to the original, it makes no sense to hold a lock
across an await.

In some situations, it’s important to protect your object from concurrent access, but it
isn’t important that no other thread accesses the object during an await. In those sit-
uations, you have the option of writing the slightly verbose code that explicitly locks
twice:

lock (sync)
{
 // Prepare for async operation
}

int myNum = await AlexsMethodAsync();

lock (sync)
{
 // Use result of async operation
}

Alternatively, you could use a library that handles concurrency control for you—for
example, NAct, which is introduced in Chapter 10.

If you’re unlucky, you may need to hold some kind of lock over the execution of an
asynchronous operation. When this happens, you need to think hard, because in gen-
eral it’s very difficult to lock resources across an asynchronous call without inviting
serious contention issues and deadlocks. It may be best to redesign your program.

LINQ Query Expressions
C# has syntax to make it easier to write declarative queries for filtering, transforming,
ordering, and grouping data. Those queries can then be executed on .NET collections,
or translated for execution on databases or other data sources.

IEnumerable<int> transformed = from x in alexsInts
 where x != 9
 select x + 2;

It is not valid C# to use await in most places in a Query Expression. This is because
those places are transformed by the compiler to lambda expressions, and as such, the
lambda expression would need to be marked async. The syntax to mark these implicit
lambda expressions async simply doesn’t exist, and would probably be really confusing
if it did.

Where await Can’t Be Used | 29

www.it-ebooks.info

http://www.it-ebooks.info/

You can always write the equivalent expression using the extension methods that LINQ
uses internally. Then the lambda expressions become explicit, and you can mark them
as async to use await.

IEnumerable<Task<int>> tasks = alexsInts
 .Where(x => x != 9)
 .Select(async x => await DoSomthingAsync(x) + await DoSomthingElseAsync(x));

IEnumerable<int> transformed = await Task.WhenAll(tasks);

To gather the results, I’ve used Task.WhenAll, which is a utility for working with
collections of Tasks that we’ll look at in detail in Chapter 7.

Unsafe Code
Code that is marked unsafe may not contain await. Unsafe code should be very rare
and should be kept to self-contained methods that don’t need to be asynchronous. The
await compiler transformation would break the unsafe code in most situations, anyway.

Exception Capture
Exceptions in async methods are designed to act very similarly to exceptions in normal
synchronous methods. However, the extra complexity of async means that there are
subtle differences. Here, I’ll talk about how async makes exception handling simple,
and I’ll describe the caveats in more detail in Chapter 9.

When it completes, the Task type has a concept of whether it finished successfully or
failed. This is most simply exposed by the IsFaulted property, which is true when an
exception is thrown during the execution of the Task. The await keyword is aware of
this and will rethrow the exception contained in the Task.

If you’re familiar with the .NET exception system, you may be won-
dering whether the stack trace of the exception is preserved correctly
when the exception is rethrown. That has always been impossible in the
past; each exception could only be thrown once. However, in .NET 4.5
that limitation was fixed, with a new class called ExceptionDispatch
Info, which cooperates with Exception to capture and rethrow an
exception with the correct stack trace.

The async method is also aware of exceptions. Any exception that happens during an
async method, and isn’t caught, is placed into the Task returned to the caller. When
that happens, if the caller is already awaiting the Task, the exception will be thrown
there. In this way, the exception propagates back through the callers, forming a virtual
stack trace in exactly the same way it would in synchronous code.

30 | Chapter 5: What await Actually Does

www.it-ebooks.info

http://www.it-ebooks.info/

I call this a virtual stack trace, because the stack is a concept that a single
thread has, and in async code, the actual stack of the current thread may
be very different from the stack trace that an exception produces. The
exception captures the stack trace of the programmer’s intention, with
the methods that the programmer called, rather than the details of how
C# chose to execute parts of those methods.

Async Methods Are Synchronous Until Needed
I said before that async methods are only asynchronous if they consume an asynchro-
nous method with an await. Until that happens, they run in the thread that called them,
just the same as a normal synchronous method. This sometimes has very real implica-
tions, especially when it’s possible for an entire chain of async methods to complete
synchronously.

Remember that the async method only pauses when it reaches the first await. Even
then, it sometimes doesn’t need to, because sometimes the Task given to an await is
already complete. A Task can be already complete in these situations:

• It was created complete, by the Task.FromResult utility method, which we’ll ex-
plore further in Chapter 7

• It was returned by an async method that never reached an await

• It ran a genuine asynchronous operation, but has now finished (perhaps because
the current thread did something else before awaiting)

• It was returned by an async method that reached an await, but the Task it awaited
was also already complete

Because of the last possibility, something interesting happens when you await a Task
that’s already complete, deep in a chain of async methods. The entire chain is likely to
complete synchronously. That’s because in a chain of async methods, the first await to
be called is always the deepest one. The others are only reached after the deepest method
has had a chance to return synchronously.

You might wonder why you would use async in the first place if the first or second
possibilities happened. If those methods were guaranteed to always return synchro-
nously, you’d be right, and it would be more efficient to write synchronous code than
to write async methods with no await. However, there are situations where methods
would sometimes return synchronously. For example, a method that cached its results
in memory could return synchronously when the result is available from the cache, but
asynchronously when it needs to make a network request. You may also want to make
methods return Task or Task<T> to future-proof a codebase, when you know there’s a
good chance you’d like to make those methods asynchronous at some point down the
line.

Async Methods Are Synchronous Until Needed | 31

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

The Task-Based Asynchronous Pattern

The Task-based Asynchronous Pattern (TAP) is a set of recommendations from
Microsoft for writing asynchronous APIs in .NET using Task. The document by Stephen
Toub from the parallel programming team at Microsoft has good examples and is worth
a read.

The pattern makes APIs that can be consumed using await, and while using async
produces methods that follow the pattern, it’s often useful to use Task manually. In this
chapter, I’ll explain the pattern, and techniques to work with it.

What the TAP Specifies
I’ll assume we already know how to design a good method signature for synchronous
C# code:

• It should have a few parameters, or maybe none. ref and out parameters should
be avoided if possible.

• It should have a return type, if it makes sense, which really expresses the result of
the code inside the method, as opposed to a success indicator like in some C++
code.

• It should have a name that explains the behavior of the method, without extra
notation.

• Common or expected failures should be part of the return type, while unexpected
failures should throw exceptions.

Here is a well designed synchronous method, which is part of the Dns class:

public static IPHostEntry GetHostEntry(string hostNameOrAddress)

The TAP gives the same level of guidelines on designing an asynchronous method,
based on your existing skills with synchronous methods. Here they are:

33

www.it-ebooks.info

http://www.microsoft.com/en-gb/download/details.aspx?id=19957
http://www.it-ebooks.info/

• It should have the same parameters as an equivalent synchronous method would.
ref and out parameters must never be used.

• It should return Task, or Task<T>, depending on whether the synchronous method
would have a return type. That task should complete at some point in the future,
providing the result value the method.

• It should be named NameAsync, where Name is the name the equivalent synchronous
method would have had.

• An exception caused by a mistake in the usage of the method may be thrown
directly from the method. Any other exception should be placed in the Task.

And here is a well-designed TAP method:

public static Task<IPHostEntry> GetHostEntryAsync(string hostNameOrAddress)

This may all seem completely obvious, but as we saw in “Some Asynchronous Patterns
Used in .NET” on page 13, this is the third formal asynchronous pattern that has been
used in the .NET framework, and I’m sure others have used countless informal ways
to write asynchronous code.

The key idea of the TAP is for the asynchronous method to return a Task, which
encapsulates the promise of a long-running operation completing in the future.
Without that idea, previous asynchronous patterns needed to either add extra param-
eters to the method, or add extra methods or events to the interface to support the
callback mechanism. Task can contain whatever infrastructure is needed to support the
callback, without polluting your code with the details.

An added benefit is that, because the mechanics of the asynchronous callback are now
in Task, they don’t need to be duplicated everywhere an asynchronous call is made. In
turn, that means the mechanics can afford to be more complicated and powerful, mak-
ing it feasible to do things like restore context, including synchronization context, as
the callback is made. It also provides a common API for dealing with asynchronous
operations, making compiler features like async reasonable, which wouldn’t have been
reasonable with the other patterns.

Using Task for Compute-Intensive Operations
Sometimes, a long-running operation doesn’t make any network requests or access the
disk; it just takes a long time because it’s a difficult calculation that needs a lot of
processor time to complete. Of course, we can’t expect to be able to do this without
tying up a thread, like we could with a network access. But in programs with a user
interface, we still want to avoid freezing the UI. To fix that, we have to return the
UI thread to process other events and use a different thread for our long-running
computation.

Task provides an easy way to do this, and you can use await with it like any other
Task to update the UI when the computation is complete:

34 | Chapter 6: The Task-Based Asynchronous Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

Task t = Task.Run(() => MyLongComputation(a, b));

Task.Run uses a thread from the ThreadPool to execute the delegate you give it. In this
case, I’ve used a lambda to make it easy to pass my local variables to the computation.
The resulting Task is started immediately, and we can await it just like any other Task:

await Task.Run(() => MyLongComputation(a, b));

This is a very simple way do work on a background thread.

For example, if you need more control over which thread does the computation or how
it is queued, Task has a static property called Factory of type TaskFactory. This has a
method StartNew with various overloads for controlling the execution of your compu-
tation:

Task t = Task.Factory.StartNew(() => MyLongComputation(a, b),
 cancellationToken,
 TaskCreationOptions.LongRunning,
 taskScheduler);

If you’re writing a library that contains a lot of compute-intensive methods, you may
be tempted to provide asynchronous versions of your methods that call Task.Run to
start the work in a background thread. That’s not a good idea, because the caller of
your API knows more about the threading requirements of the application than you
do. For example, in web applications, there is no benefit to using the thread pool; the
only thing that should be optimized is the total number of threads. Task.Run is a very
easy call to make, so leave your callers to do it if they need to.

Creating a Puppet Task
The TAP is really easy to consume, so you’ll naturally want to provide it in all the APIs
you make. We already know how to do this when you’re consuming other TAP APIs,
using an async method. But what about when the long-running operation isn’t already
available as a TAP API? Maybe it’s an API using another asynchronous pattern. Maybe
you’re not consuming an API, but you’re doing something asynchronous completely
manually.

The tool to use here is TaskCompletionSource<T>. It is a way to create a Task which is
your puppet. You can make the Task complete at any point you like, and you can make
it fault by giving it an exception at any point you like.

Let’s look at an example. Suppose you’d like to encapsulate a prompt displayed to the
user with this method:

Task<bool> GetUserPermission()

The prompt is a custom dialog you’ve written that asks the user for consent of some
kind. Because the permission could be needed at many points in your application, it’s
important to make it one easy method to call. This is a perfect place to use an asyn-
chronous method, because you want to release the UI thread to actually display the

Creating a Puppet Task | 35

www.it-ebooks.info

http://www.it-ebooks.info/

dialog. But, it isn’t even close to the traditional asynchronous method that calls through
to a network request or other long-running operation. Here, we’re awaiting the user.
Let’s look at the body of the method.

private Task<bool> GetUserPermission()
{
 // Make a TaskCompletionSource so we can return a puppet Task
 TaskCompletionSource<bool> tcs = new TaskCompletionSource<bool>();

 // Create the dialog ready
 PermissionDialog dialog = new PermissionDialog();

 // When the user is finished with the dialog, complete the Task using SetResult
 dialog.Closed += delegate { tcs.SetResult(dialog.PermissionGranted); };

 // Show the dialog
 dialog.Show();

 // Return the puppet Task, which isn't completed yet
 return tcs.Task;
}

Notice that the method isn’t marked async; we’re creating a Task manually, so we don’t
want the compiler to generate one for us. The TaskCompletionSource<bool> creates the
Task, and makes it available as a property for us to return. We can later use the SetRe
sult method on the TaskCompletionSource to make the Task complete.

Because we’ve followed the TAP, our caller can just await the user’s permission. The
call is very neat.

if (await GetUserPermission())
{

One annoyance is there isn’t a non-generic version of TaskCompletionSource<T>. How-
ever, because Task<T> is a subclass of Task, you can use a Task<T> anywhere you wanted
a Task. In turn that means you can use a TaskCompletionSource<T>, and the Task<T>
returned by the Task property is a perfectly valid Task. I tend to use a TaskCompletion
Source<object> and call SetResult(null) to complete it. You could easily create a non-
generic TaskCompletionSource if you wanted, based on the generic one.

Interacting with Old Asynchronous Patterns
The .NET team have created TAP versions of all the important asynchronous APIs in
the framework. But it is interesting to know how to build a TAP method from non-TAP
asynchronous code, in case you need to interact with some existing asynchronous
codebase. It’s also an interesting example of how to use TaskCompletionSource<T>.

Let’s examine the DNS lookup example that I used earlier. In .NET 4.0, the asynchro-
nous version of the DNS lookup method used the IAsyncResult asynchronous pattern.
That means it consisted of a Begin method and an End method:

36 | Chapter 6: The Task-Based Asynchronous Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

IAsyncResult BeginGetHostEntry(string hostNameOrAddress,
 AsyncCallback requestCallback,
 object stateObject)

IPHostEntry EndGetHostEntry(IAsyncResult asyncResult)

Typically, you would consume this API using a lambda as the callback and call the
End method from inside the lambda. That’s exactly what we’ll do here, but instead of
actually doing anything in the callback, we’ll just use a TaskCompletionSource<T> to
complete a Task.

public static Task<IPHostEntry> GetHostEntryAsync(string hostNameOrAddress)
{
 TaskCompletionSource<IPHostEntry> tcs = new TaskCompletionSource<IPHostEntry>();
 Dns.BeginGetHostEntry(hostNameOrAddress, asyncResult =>
 {
 try
 {
 IPHostEntry result = Dns.EndGetHostEntry(asyncResult);
 tcs.SetResult(result);
 }
 catch (Exception e)
 {
 tcs.SetException(e);
 }
 }, null);

 return tcs.Task;
}

This code is made more complex by the possibility of an exception. If the DNS resolve
fails, an exception will be thrown when we call EndGetHostEntry. That’s
why the IAsyncResult pattern uses a convoluted system with an End method, rather
than just passing the result into the callback directly. When an exception is thrown,
we should put it into our TaskCompletionSource<T> so our caller can get the exception
according to the TAP style.

In fact, there were enough asynchronous APIs following this pattern that the .NET
framework team made a utility method to turn them into a TAP version, which is
available to us as well:

Task t = Task<IPHostEntry>.Factory.FromAsync<string>(Dns.BeginGetHostEntry,
 Dns.EndGetHostEntry,
 hostNameOrAddress,
 null);

It takes the Begin and End methods as delegates, and uses a mechanism very similar to
the way we did it before. It probably does it more efficiently than our simple approach
though.

Interacting with Old Asynchronous Patterns | 37

www.it-ebooks.info

http://www.it-ebooks.info/

Cold and Hot Tasks
When the Task Parallel Library originally introduced the Task type in .NET 4.0, it had
the concept of a cold Task, which still needs to be started, as opposed to a hot Task,
which is already running. So far, we’ve only dealt with hot Tasks.

The TAP specifies that all Tasks must be hot before they are returned from a method.
Luckily, all the techniques we’ve spoken about for creating a Task create a hot one. The
exception is the TaskCompletionSource<T> technique, which doesn’t really have the
concept of a hot or cold task. You just need to make sure to complete the Task at some
point yourself.

Up-Front Work
We already know that when you call a TAP asynchronous method, the method runs
on the current thread, as with any other method. The difference is that a TAP method
will probably not have actually finished working before it returns. It will return a
Task quickly, and that Task will complete when the actual work is done.

Having said that, some code in the method will run synchronously, in the current
thread. In the case of an async method, that will be at least the code up to, and including
the operand of, the first await, as we saw in “Async Methods Are Synchronous Until
Needed” on page 31.

The TAP recommends that the synchronous work done by a TAP method should be
the minimum amount possible. You can check that the arguments are valid and scan
a cache to avoid the long-running operation, but you shouldn’t do a slow computation.
Hybrid methods, which do some computation, followed by a network access or some-
thing similar are good, but you should use Task.Run to move the computation to a
background thread. Imagine the routine that uploads an image to a website, but needs
to resize it first to save bandwidth:

Image resized = await Task.Run(() => ResizeImage(originalImage));
await UploadImage(resized);

While this is important in a UI application, it has no practical benefits in a web appli-
cation. Nevertheless, when we see a method that appears to follow the TAP, we expect
it to return quickly. Anyone that takes your code and moves it to a UI application will
be in for a surprise if you did a slow picture resize synchronously.

38 | Chapter 6: The Task-Based Asynchronous Pattern

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Utilities for Async Code

The Task-based Asynchronous Pattern is designed to make it easy to create utilities for
working with Tasks. Because all TAP methods give you a Task, any special behavior we
write for one TAP method, we can reuse against others. In this chapter, we’ll look at
some utilities for working with Task, including:

• Methods that look like TAP methods, but have useful special behavior rather than
being asynchronous calls themselves

• Combinators, which are methods which process Tasks, generating useful new
Tasks based on them

• Tools for canceling and showing progress during asynchronous operations

While a lot of these utilities already exist, it’s useful to see how easy it is to implement
them yourself, in case you need similar tools in the future that aren’t provided by
the .NET Framework.

Delaying for a Period of Time
The most simple long-running operation that you might want to perform is possibly to
do absolutely nothing for a length of time. This is the equivalent of Thread.Sleep in the
synchronous world. In fact, you could implement it using Thread.Sleep in conjunction
with Task.Run:

await Task.Run(() => Thread.Sleep(100));

But this simple approach is wasteful. A thread is being used solely to block for the time
period, which is a waste. There is already a way to have .NET call your code back after
a period of time without using any threads, the System.Threading.Timer class. A more
efficient approach would be to set up a Timer, then use a TaskCompletionSource to create
a Task that we can cause to complete when the Timer fires:

39

www.it-ebooks.info

http://www.it-ebooks.info/

private static Task Delay(int millis)
{
 TaskCompletionSource<object> tcs = new TaskCompletionSource<object>();
 Timer timer = new Timer(_ => tcs.SetResult(null), null, millis, Timeout.Infinite);
 tcs.Task.ContinueWith(delegate { timer.Dispose(); });
 return tcs.Task;
}

Of course, this is such a useful little tool that it’s provided in the framework. It’s called
Task.Delay, and of course the framework version is more powerful, robust, and prob-
ably more efficient than mine.

Waiting for a Collection of Tasks
As we saw back in “Task and await” on page 20, it’s very easy to run multiple asyn-
chronous operations in parallel by calling them in turn, then awaiting them in turn.
What we’ll find out in Chapter 9 is that it’s important that we await each and every
Task that we start, otherwise exceptions can get lost.

The solution to this problem is to use Task.WhenAll, which is a utility that can take
many Tasks and produce one aggregated Task that will complete once all the inputs
complete. Here is the simplest version of WhenAll, it has overloads for generic
Task<T>s as well:

Task WhenAll(IEnumerable<Task> tasks)

The key difference between using WhenAll and just awaiting multiple tasks yourself is
that WhenAll gets the behavior right when exceptions are thrown. You should always
use WhenAll for this reason.

The generic version of WhenAll gives you an array containing the results of the individual
Tasks you gave it. That’s for convenience rather than being necessary, because you still
have access to the original Tasks, so you can use their Result property, knowing that
they must already be complete.

Let’s revisit the favicon browser as an example. Remember that we now have a version
that calls an async void method to begin downloading each icon in turn. That method
then adds the icon to the window when the download is done. This approach is very
efficient, as all the downloads happen in parallel, but there are two problems:

• The icons appear in the window in whichever order they finish downloading

• Because each icon is downloaded in its own async void method, any exceptions
that escape it are rethrown in the UI thread, and dealing with them neatly would
be hard

So let’s refactor so that the method that loops through all the icons is itself async. That
means we can take control of the asynchronous operations as a group. We’ll start at
the point after that refactor with this version that does each icon in turn:

40 | Chapter 7: Utilities for Async Code

www.it-ebooks.info

http://www.it-ebooks.info/

private async void GetButton_OnClick(object sender, RoutedEventArgs e)
{
 foreach (string domain in s_Domains)
 {
 Image image = await GetFavicon(domain);
 AddAFavicon(image);
 }
}

Now we’ll fix this so it does all the downloads in parallel, but still displays the icons in
order. We first start all the downloads by calling GetFavicon and storing the Tasks in a
List.

List<Task<Image>> tasks = new List<Task<Image>>();
foreach (string domain in s_Domains)
{
 tasks.Add(GetFavicon(domain));
}

Or, even better, if you like LINQ:

IEnumerable<Task<Image>> tasks = s_Domains.Select(GetFavicon);

// The IEnumerable from Select is lazy, so evaluate it to start the tasks
tasks = tasks.ToList();

Once we have the group of tasks, we give them to Task.WhenAll and it gives us a Task
that will complete when all of the downloads are done, with all the results.

Task<Image[]> allTask = Task.WhenAll(tasks);

Then, all we have left to do is await the allTask, and use its results:

Image[] images = await allTask;
foreach (Image eachImage in images)
{
 AddAFavicon(eachImage);
}

So, we’ve successfully written something that’s really quite a complex piece of parallel
logic in only a few lines. The final result is available under the branch whenAll.

Waiting for Any One Task from a Collection
The other common tool you might need for working with multiple Tasks is to wait for
the first to finish. This could be because you are requesting a resource from a variety
of sources, and whichever response comes earliest can be used.

The tool for this job is Task.WhenAny. Here is a generic version. Again, there are lots of
overloads, but this one is interesting.

Task<Task<T>> WhenAny(IEnumerable<Task<T>> tasks)

The signature of WhenAny is a little harder to understand than WhenAll, and this is for
good reason. When exceptions are possible, WhenAny is a tool that needs to be used

Waiting for Any One Task from a Collection | 41

www.it-ebooks.info

http://www.it-ebooks.info/

carefully. If you want to find out about all exceptions that happen in your program,
you need to make sure that every single Task you make is awaited, or exceptions can
get lost. Using WhenAny and simply forgetting about the other Tasks is equivalent to
catching all exceptions and ignoring them, which is bad practice and tends to show up
later as subtle bugs and invalid states.

The return type of WhenAny is Task<Task<T>>. That means after you’ve awaited it, you
get a Task<T>. This Task<T> is whichever of the original ones completed first, and thus
is always already completed when you get it. The reason that you are given the Task
rather than just the T result is so you know which of the original Tasks finished first, so
you can cancel and await all the others.

Task<Task<Image>> anyTask = Task.WhenAny(tasks);
Task<Image> winner = await anyTask;
Image image = await winner; // This always completes synchronously

AddAFavicon(image);

foreach (Task<Image> eachTask in tasks)
{
 if (eachTask != winner)
 {
 await eachTask;
 }
}

There’s no harm in using the winner to update the UI as soon as it completes, but after
that’s done, you should await all the other Tasks as I have done here. Hopefully they
will have all succeeded, and this extra code will have no effect on your program. But if
one of them fails, this means you’ll find out about it, and can fix the bug.

Creating Your Own Combinators
We call WhenAll and WhenAny asynchronous combinators. While they return Tasks, they
aren’t themselves asynchronous methods, but rather combine other Tasks in useful
ways. You can also write your own combinators if you need them, so you have a palette
of reusable parallel behaviors you can apply where you like.

Let’s write a combinator as an example. Perhaps we’d like to add a timeout to any
Task. Although we could write that from scratch fairly easily, it serves as a good example
to make use of both Delay and WhenAny. In general, combinators are often easiest to
implement using async, as in this case, but sometimes you won’t need to.

private static async Task<T> WithTimeout<T>(Task<T> task, int time)
{
 Task delayTask = Task.Delay(time);
 Task firstToFinish = await Task.WhenAny(task, delayTask);

 if (firstToFinish == delayTask)
 {

42 | Chapter 7: Utilities for Async Code

www.it-ebooks.info

http://www.it-ebooks.info/

 // The delay finished first - deal with any exception
 task.ContinueWith(HandleException);
 throw new TimeoutException();
 }

 return await task; // If we reach here, the original task already finished
}

My technique is to create a Task using Delay that will complete after the timeout. I then
use WhenAny on both that and the original Task so I resume at whichever is earlier, the
operation finishing, or the timeout expiring. After that, it’s a case of finding which has
happened and either throwing a TimeoutException or returning the result.

Notice that I’ve been careful about exceptions in the case that the timeout expires. I’ve
attached a continuation to the original Task using ContinueWith, which handles an ex-
ception if there is one. I know that the delay can never throw an exception, so I don’t
need to deal with it. The implementation of the HandleException method looks some-
thing like this:

private static void HandleException<T>(Task<T> task)
{
 if (task.Exception != null)
 {
 logging.LogException(task.Exception);
 }
}

Obviously, exactly what to do here depends on your strategy for handling exceptions.
By attaching this using ContinueWith, I’ve made sure that whenever the original Task
does finish, however far in the future that may be, the code to check for an exception
is run. Importantly, this doesn’t hold up the main execution of the program, which
already did whatever it needed to do when the timeout expired.

Cancelling Asynchronous Operations
Rather than being tied in to the Task type, cancellation in the TAP is enabled by the
CancellationToken type. By convention, any TAP method which supports being
canceled should have an overload that takes a CancellationToken after the normal
parameters. An example in the framework is the DbCommand type, and its asynchronous
methods that query a database. The simplest overload of ExecuteNonQueryAsync has no
parameters.

Task<int> ExecuteNonQueryAsync(CancellationToken cancellationToken)

We’ll start by looking at how to cancel an asynchronous method we’ve called. To do
that, we need CancellationTokenSource, which is a utility for creating Cancellation
Tokens and also controlling them, in a similar way to how a TaskCompletionSource
creates and controls a Task. The following code is incomplete, but shows the kind of
technique you need:

Cancelling Asynchronous Operations | 43

www.it-ebooks.info

http://www.it-ebooks.info/

CancellationTokenSource cts = new CancellationTokenSource();
cancelButton.Click += delegate { cts.Cancel(); };
int result = await dbCommand.ExecuteNonQueryAsync(cts.Token);

When you call Cancel on the CancellationTokenSource, the CancellationToken moves
to a canceled state. It’s possible to register a delegate to be called when that happens,
but in practice, a much simpler polling approach to detecting whether
your caller wants to cancel you is more effective. If you’re writing a loop in an asyn-
chronous method, and a CancellationToken is available, you should just call
ThrowIfCancellationRequested in each iteration of the loop.

foreach (var x in thingsToProcess)
{
 cancellationToken.ThrowIfCancellationRequested();
 // Process x ...
}

When you call ThrowIfCancellationRequested on a CancellationToken which is can-
celed, it will throw an OperationCanceledException. The Task Parallel Library knows
that this type of exception represents cancellation rather than a failure, and will treat
it differently. For example, Task has a property called IsCanceled that automatically
becomes true when an OperationCanceledException is thrown while executing an async
method.

One neat feature of the token approach to cancellation is that the same
CancellationToken can be distributed to as many parts of the asynchronous operation
as you need, simply by passing it to them. Whether those parts run in parallel or
sequentially, and whether they are computations involving loops or remote operations,
the same token can cancel them all.

Returning Progress During an Asynchronous Operation
Aside from keeping the UI responsive, and giving the user the opportunity to cancel,
another good way to improve the experience during an unavoidably slow operation is
to indicate how much longer the user will have to wait. To do this, another pair of types
for indicating progress are provided and recommended as part of the TAP. This time,
you pass asynchronous methods an interface, IProgress<T>, which they can call to give
an indication of how they’re doing.

The IProgress<T> parameter is, by convention, placed right at the end of the parameters
to the method, after any CancellationToken. Here is how you would add progress
reporting to DownloadDataTaskAsync.

Task<byte[]> DownloadDataTaskAsync(Uri address,
 CancellationToken cancellationToken,
 IProgress<DownloadProgressChangedEventArgs> progress)

To use a method like this, you need to create an implementation of IProgress<T>.
Luckily, one is provided that does exactly what is needed in most situations,

44 | Chapter 7: Utilities for Async Code

www.it-ebooks.info

http://www.it-ebooks.info/

Progress<T>. You construct one of these, either passing a lambda into its constructor,
or signing up to an event, to get notifications of new progress figures, which you can
use to update your UI.

new Progress<int>(percentage => progressBar.Value = percentage);

The clever feature of Progress<T> is that it will capture the SynchronizationContext on
construction, and use it to call your progress update code in the right thread. This is
much the same as the behavior of the Task itself continuing after an await, so you don’t
need to worry about the fact that your IProgress<T> could be called from any thread.

If you’d like to report progress when writing a TAP method, you just need to call the
Report method on the IProgress<T>.

progress.Report(percent);

The difficult part is to choose the type parameter T. This is the type of the object that
you pass to Report, which is the same object that the caller’s lambda is given. An int
is a good choice for simple percentages, as I’ve used here, but sometimes you need more
details. Be careful though, because that object will usually be consumed on a different
thread to the one that made it. Use an immutable type to avoid problems.

Returning Progress During an Asynchronous Operation | 45

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Which Thread Runs My Code?

As I’ve said before, asynchronous programming is all about threads. In C#, that means
we need to understand which .NET thread is running our code at what points in the
program, and what happens to the threads while long-running operations take place.

Before the First await
In each async method you write, some code will be before the first occurrence of the
await keyword. Equally, some code is in the expression that gets awaited.

This code always runs in the calling thread. Nothing interesting happens before the
first await.

This is one of the most common misconceptions about async. Async
never schedules your method to run on a background thread. The only
way to do that is using something like Task.Run, which is explicitly for
that purpose.

In the case of a UI application, that means the code before the first await runs in the
UI thread. Likewise, in an ASP.NET web application, it runs in an ASP.NET worker
thread.

Typically, you might run another async method as the expression being awaited on the
line containing the first await. Because this expression is executed before the first
await, it must also get run in the calling thread. That means the calling thread will
continue executing code deep into your application, all the way until some method
actually returns a Task. The method that does that might be a framework method, or
it might be a method using TaskCompletionSource to construct a puppet Task. That
method is the source of the asynchrony in your program—all the async methods are
just propagating the asynchrony.

47

www.it-ebooks.info

http://www.it-ebooks.info/

The code that’s run before that first real asynchronous point is reached could be quite
extensive, and in a UI application that code is all run by the UI thread, while the UI
remains unresponsive. Hopefully, the code doesn’t take too long, but it’s important to
remember that just using async won’t guarantee your UI is responsive. If it does feel
slow, get a performance profiler, and find out where the time is spent.

During the Asynchronous Operation
Which thread actually does the asynchronous operation?

That’s a trick question. This is asynchronous code. For typical operations like network
requests, there are no threads at all that are blocked waiting for the operation to
complete.

Of course, if you’re using async to wait for a computation, for example
using Task.Run, the thread pool thread performing the computation
exists and is busy.

There is a thread waiting for network requests to complete, but it is shared between all
network requests. It’s called the IO completion port thread on Windows. When the
network request completes, an interrupt handler in the operating system adds a job to
a queue for the IO completion port. To perform 1000 network requests, the requests
are all started, and as the responses arrive, they are processed in turn by the single IO
completion port.

In reality, there are usually a handful of IO completion port threads, to
take advantage of multiple CPU cores. However, the number of threads
is the same whether there are currently 10 outstanding network requests
or 1000.

SynchronizationContext in Detail
SynchronizationContext is a class provided by the .NET Framework, which has the
ability to run code in a particular type of thread. There are various Synchronization
Contexts used by .NET, the most important of which are the UI thread contexts used
by WinForms and WPF.

Instances of SynchronizationContext itself don’t do anything very useful, so all actual
instances of it tend to be subclasses. It also has static members which let you read and
control the current SynchronizationContext. The current SynchronizationContext is a
property of the current thread. The idea is that at any point that you’re running in a
special thread, you should be able to get the current SynchronizationContext and store
it. Later, you can use it to run code back on the special thread you started on. All this

48 | Chapter 8: Which Thread Runs My Code?

www.it-ebooks.info

http://www.it-ebooks.info/

should be possible without needing to know exactly which thread you started on, as
long as you can use the SynchronizationContext, you can get back to it.

The important method of SynchronizationContext is Post, which can make a delegate
run in the right context.

Some SynchronizationContexts encapsulate a single thread, like the UI thread. Some
encapsulate a particular kind of thread—for example, the thread pool—but can choose
any of those threads to post the delegate to. Some don’t actually change which thread
the code runs on, but are only used for monitoring, like the ASP.NET Synchronization
Context.

await and SynchronizationContext
We know that your code before the first await is run by the calling thread, but what
about when your method is resumed after the await?

In fact, most of the time, it is also run by the calling thread, despite the fact that the
calling thread has probably done other things in between. That makes things very sim-
ple for the programmer.

C# uses SynchronizationContext to accomplish this. As we saw previously in “Con-
text” on page 27, when you await a Task, the current SynchronizationContext is stored
as part of pausing the method. Then, when it’s time for the method to be resumed, the
await keyword’s infrastructure uses Post to resume the method on the captured
SynchronizationContext.

Now, the caveats. The method can resume on a different thread to where it started if:

• The SynchronizationContext was one that has multiple threads, like the thread pool

• The SynchronizationContext was one that doesn’t actually switch threads

• There was no current SynchronizationContext when await was reached, for exam-
ple in a console application

• You configured the Task to not use the SynchronizationContext to resume

Luckily, for UI applications, where being resumed on the same thread is most impor-
tant, none of these will apply, so you can safely manipulate your UI after an await.

The Lifecycle of an Async Operation
Let’s look at a version of the favicon example, working out exactly which thread runs
which code. I have written two async methods:

async void GetButton_OnClick(...)

async Task<Image> GetFaviconAsync(...)

The Lifecycle of an Async Operation | 49

www.it-ebooks.info

http://www.it-ebooks.info/

The event handler GetButton_OnClick calls GetFaviconAsync, which in turn calls Web
Client.DownloadDataTaskAsync. Here’s a diagram of the sequence of events as the meth-
ods are executed (Figure 8-1).

Figure 8-1. lifecycle.png

1. The user clicks the button, so the event handler GetButton_OnClick is queued.

2. The UI thread executes the first half of GetButton_OnClick, including the call to
GetFaviconAsync.

3. The UI thread continues into GetFaviconAsync and executes the first half of it,
including the call to DownloadDataTaskAsync.

4. The UI thread continues into DownloadDataTaskAsync, which starts the download
and returns a Task.

5. The UI thread leaves DownloadDataTaskAsync, and reaches the await in
GetFaviconAsyncAsync.

6. The current SynchronizationContext is captured—it’s the UI thread.

7. GetFaviconAsync is paused by the await, and the Task from DownloadDataTask
Async is told to resume it when done (with the captured SynchronizationContext).

8. The UI thread leaves GetFaviconAsync, which returned a Task, and reaches the
await in GetButton_OnClick.

50 | Chapter 8: Which Thread Runs My Code?

www.it-ebooks.info

http://www.it-ebooks.info/

9. Similarly, GetButton_OnClick is paused by the await.

10. The UI thread leaves GetButton_OnClick, and is freed to work on other user actions.

At this point, we are waiting for the icon to download. This could
take a few seconds. Notice the UI thread is free to process other
user actions, and the IO completion port thread isn’t involved yet.
The total number of threads blocked during the operation is zero.

11. The download finishes, so the IO completion port queues the logic in
DownloadDataTaskAsync to handle that.

12. The IO completion port thread sets the Task that was returned from DownloadData
TaskAsync to complete.

13. The IO completion port thread runs code inside Task to handle completion, which
calls Post on the captured SynchronizationContext (the UI thread) to continue.

14. The IO completion port thread is freed to work on other IO.

15. The UI thread finds the Posted instruction and resumes GetFaviconAsync, executing
the second half of it, to the end.

16. As the UI thread leaves GetFaviconAsync, it sets the Task that was returned by
GetFaviconAsync to complete.

17. Because this time, the current SynchronizationContext is the same as the captured
one, no Post is needed, and the UI thread proceeds synchronously.

This logic is unreliable in WPF, because WPF often creates new
SynchronizationContext objects. Despite them being equivalent,
this makes the TPL think it needs to Post again.

18. The UI thread resumes GetButton_OnClick, executing the second half of it, to the
end.

That was pretty complicated, but I think it’s worth seeing each step spelled out. Notice
that every single line of my code was executed by the UI thread. The IO completion
port thread only ran long enough to Post an instruction to the UI thread, which ran the
second half of both my methods.

Choosing Not to Use SynchronizationContext
Each implementation of SynchronizationContext performs Post in a different way. Most
of them are relatively expensive. To avoid that cost, .NET will not use a Post when the
captured SynchronizationContext is the same as the current at the time of the Task’s
completion. When this happens, if you look using the debugger, the call stack will be
upside-down (ignoring framework code). The deepest method, which from the

Choosing Not to Use SynchronizationContext | 51

www.it-ebooks.info

http://www.it-ebooks.info/

programmer’s point of view is called by other methods, ends up calling the other meth-
ods as it completes.

When the SynchronizationContext is different, however, an expensive Post is needed.
In performance-critical code, or in library code where you don’t care which thread you
use, you might choose not to pay that performance penalty. That’s done by calling
ConfigureAwait on the Task before awaiting it. If you do that, it won’t Post back to the
original SynchronizationContext when resuming.

byte[] bytes = await client.DownloadDataTaskAsync(url).ConfigureAwait(false);

ConfigureAwait doesn’t always do as you might expect, though. It’s designed to be a
hint to .NET that you don’t mind which thread your method resumes on, rather than
a strict instruction. What it does depends on is which thread completed the Task you’re
awaiting. If that thread is not important, perhaps from the thread pool, it should con-
tinue to execute your code. But if it’s an important thread of some kind, .NET will
prefer to release it to do other things, and your method will resume on the thread pool
instead. .NET uses the current SynchronizationContext of the thread to judge whether
it’s important.

Interacting with Synchronous Code
You are probably already working on an existing application, and while new code you
write can be asynchronous using the TAP, you need to communicate with old syn-
chronous code. When you do this, you usually lose the benefits of asynchrony, but it’s
still worth planning for the future and writing new code in an asynchronous style to be
able to make the switch at some point.

Consuming synchronous code from asynchronous code is easy. If given a blocking API,
you can just run it on the thread pool and await it, using Task.Run. You use a thread,
but that’s unavoidable.

var result = await Task.Run(() => MyOldMethod());

Consuming asynchronous code from synchronous code, or implementing a synchro-
nous API, also looks easy, but can have hidden problems. Task has a property called
Result, which blocks waiting for the Task to complete. You can use it in similar places
to await, but without your method needing to be marked async or return a Task. Again,
a thread is wasted. This time the calling thread is used for blocking.

var result = AlexsMethodAsync().Result;

A word of warning, though: this technique fails whenever it is used from a
SynchronizationContext with only one thread, like the UI thread. Think about what
the UI thread is being asked to do. It is blocked, waiting for the Task from AlexsMethod
Async to complete. AlexsMethodAsync has most likely called another TAP method, and
awaited it. When the operation completes, the captured SynchronizationContext (the
UI thread) is used to Post the instruction for AlexsMethodAsync to resume. But the UI

52 | Chapter 8: Which Thread Runs My Code?

www.it-ebooks.info

http://www.it-ebooks.info/

thread will never pick up that message, because it’s still blocking. You’ve written a
deadlock. Luckily, this mistake tends to cause deadlocks that always happen, so aren’t
too hard to debug.

With care, you can get around the deadlock problem by moving to the thread pool
before starting the async code, so that the SynchronizationContext captured is the
thread pool rather than the UI thread. This is very ugly, though; it would probably be
better to spend the time making the calling code async.

var result = Task.Run(() => AlexsMethodAsync()).Result;

Interacting with Synchronous Code | 53

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Exceptions in Async Code

In synchronous code, exceptions work their way up the call stack, back through each
method call until they reach either a try and catch that can catch them, or they leave
your code. In async code, particularly after a method has been resumed after an
await, the current call stack has very little to do with the programmer’s intention, and
mostly contains framework logic to resume the async method. The exception would
be impossible to catch in your calling code, and stack traces wouldn’t be very helpful
at all, so C# changes the behavior of exceptions to be more useful.

You can still see the raw call stack in a debugger.

Exceptions in Async Task-Returning Methods
Most async methods you write will return Task or Task<T>. Chains of these methods,
each awaiting the next, are the asynchronous version of the call stack we’re familiar
with in synchronous code. C# strives to make the behavior of exceptions in these
methods feel very similar to working with synchronous methods. In particular,
try..catch blocks placed around an awaited async method will catch exceptions thrown
inside that async method.

async Task Catcher()
{
 try
 {
 await Thrower();
 }
 catch (AlexsException)
 {
 // Execution will reach here
 }
}

55

www.it-ebooks.info

http://www.it-ebooks.info/

async Task Thrower()
{
 await Task.Delay(100);
 throw new AlexsException();
}

Until execution reaches the first await, the synchronous call stack and
the chain of async methods are exactly the same. The behavior of ex-
ceptions at that point is still changed for consistency, but the change
required is much smaller.

To do this, C# catches any exceptions that happen in your async method. When an
exception happens, it is placed into the Task that was returned to your caller. The
Task becomes Faulted. If a method is awaiting the Task when it faults, instead of
resuming normally, the method is resumed by an exception thrown from the await.

An exception which has been rethrown by an await is the same object as the original
one thrown by the throw statement. It continues to gather a stack trace as it propagates
up the call stack, which adds to its existing stack trace. This may surprise you if you’ve
ever tried to rethrow an exception manually, for example in manual asynchronous code,
as it represents a new feature in .NET’s Exception type.

Here is an example stack trace from a chain of two async methods. My own code is
highlighted:

System.NullReferenceException: Object reference not set to an instance of an object.
 at FaviconBrowser.MainWindow.<GetFavicon>d__c.MoveNext() in
MainWindow.xaml.cs:line 74
--- End of stack trace from previous location where exception was thrown ---
 at System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task task)
 at
System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(T
ask task)
 at System.Runtime.CompilerServices.TaskAwaiter`1.GetResult()
 at FaviconBrowser.MainWindow.<GetButton_OnClick>d__0.MoveNext() in
MainWindow.xaml.cs:line 41
--- End of stack trace from previous location where exception was thrown ---
 at System.Runtime.CompilerServices.AsyncMethodBuilderCore.<ThrowAsync>b__0(Object
state)
 at ... Framework methods

The mention of MoveNext has to do with the compiler transformation that we’ll look at
in Chapter 14. There are a few framework methods between each of mine, but I can
still get an impression of the series of my own calls that caused the exception.

56 | Chapter 9: Exceptions in Async Code

www.it-ebooks.info

http://www.it-ebooks.info/

Unobserved Exceptions
One important difference between async and synchronous code is where an exception
from a called method is thrown. In async methods, it is thrown at the await, rather than
the actual call to the method. That is apparent if you split up the call and the await.

// This never throws AlexsException
Task task = Thrower();

try
{
 await task;
}
catch (AlexsException)
{
 // Execution will reach here
}

It is now very easy to forget to await an async method, especially one that returned the
non-generic Task because you don’t need any result value from it. Doing this is equiv-
alent to using an empty catch block that catches all exceptions and ignores them. This
is bad practice, because it tends to result in invalid program state, as well as subtle bugs
that happen far away from their cause. Make a point of always awaiting any async
method you call to avoid wasting time doing difficult debugging.

This behavior to ignore exceptions is actually a change from versions
of .NET before async was introduced. If you are expecting exceptions
from your Task Parallel Library code being rethrown on the finalizer
thread, that will no longer happen in .NET 4.5.

Exceptions in Async void Methods
Async methods that return void can’t be awaited, so their behavior around exceptions
must be different. We wouldn’t always want their exceptions to be unobserved. Instead,
any exceptions that leave an async void method are rethrown in the calling thread:

• If there was a SynchronizationContext when the async method was called, the
exception is Posted to it.

• If not, it is thrown on the thread pool.

In most cases, both of these will end the process unless an unhandled exception handler
is attached to the appropriate event. That’s probably not what you want, which is one
reason you should only write an async void method for the purpose of being called by
external code, or when you can guarantee that it won’t throw exceptions.

Exceptions in Async void Methods | 57

www.it-ebooks.info

http://www.it-ebooks.info/

Fire and Forget
In rare cases, you genuinely don’t care whether a method succeeds, and awaiting it
would be complex. In that case, my advice is to still return Task, but to pass that Task
to a method designed to handle exceptions in it. This extension method works well for
me:

public static void ForgetSafely(this Task task)
{
 task.ContinueWith(HandleException);
}

HandleException is a method that writes any exception to a logging system, like the one
in “Creating Your Own Combinators” on page 42.

AggregateException and WhenAll
In the asynchronous world, we have to deal with a situation that just wasn’t possible
in the synchronous world. A method may throw multiple exceptions at once. This could
be, for example, when you use Task.WhenAll to wait for a group of asynchronous op-
erations to complete. Many of them could fail, without any one failure being the first
or most important.

WhenAll is just the most common mechanism to produce multiple exceptions; there are
plenty of other ways to run multiple operations concurrently using async. So support
for multiple exceptions was built directly into Task. Instead of being able to contain an
Exception directly, Task contains an AggregateException when it faults. An
AggregateException contains a collection of other exceptions.

Because this support is built into Task, when an exception escapes an async method,
an AggregateException is created, and the actual exception is added as an inner excep-
tion, before being placed in the Task. So mostly, the AggregateException only contains
one inner exception, but WhenAll will create an AggregateException with multiple.

This all happens regardless of whether the exception happens before the
first await. Exceptions before the first await could easily have been
thrown synchronously, but that would have made them appear in the
call to the method rather than the await in the caller, which would have
been inconsistent.

At the other end, when the exception is rethrown by an await, we need a compromise.
await should throw the same type of exception that was originally thrown in the async
method, rather than the AggregateException. So it has no choice but to throw the first
inner exception. But after catching it, you can use the Task directly to get the
AggregateException, and so the complete list of exceptions.

58 | Chapter 9: Exceptions in Async Code

www.it-ebooks.info

http://www.it-ebooks.info/

Task<Image[]> allTask = Task.WhenAll(tasks);
try
{
 await allTask;
}
catch
{
 foreach (Exception ex in allTask.Exception.InnerExceptions)
 {
 // Do something with exception
 }
}

Throwing Exceptions Synchronously
The TAP recommendation allows methods to throw exceptions synchronously, but
only if the exception signifies a mistake in the call to the method, rather than an error
encountered while trying to run. We’ve seen that all async methods catch any exception
and place them into the Task, regardless of whether the exception happens before the
first await. So if you’d like to throw an exception synchronously, you need to use a
trick: using a synchronous method that checks for the mistake before calling the async
method.

private Task<Image> GetFaviconAsync(string domain)
{
 if (domain == null) throw new ArgumentNullException("domain");

 return GetFaviconAsyncInternal(domain);
}

private async Task<Image> GetFaviconAsyncInternal(string domain)
{
 ...

Doing this gives you slightly easier stack traces to interpret. Is it worth the effort? I
doubt it. But it was a useful example to help understanding.

finally in Async Methods
Finally, you are allowed to use try..finally in an async method, and it works much
like how you’d expect. Before execution leaves the method containing the finally
block, the block is guaranteed to run. That’s irrespective of whether it leaves by normal
execution, which flows through the finally block, or whether an exception happens
in the try block.

But that guarantee holds a hidden caveat. With async methods, there’s no guarantee
that execution will ever leave the method. You can easily write a method that reaches
an await, pauses, then is forgotten and garbage collected.

finally in Async Methods | 59

www.it-ebooks.info

http://www.it-ebooks.info/

async void AlexsMethod()
{
 try
 {
 await DelayForever();
 }
 finally
 {
 // Never happens
 }
}

Task DelayForever()
{
 return new TaskCompletionSource<object>().Task;
}

I’ve used TaskCompletionSource to create a puppet Task, then simply forgotten about
it. Because there’s no thread in AlexsMethod anymore, there’s nothing to mean that it’ll
ever resume or throw an exception. It will just be garbage collected eventually.

So the guarantee provided by finally is much weaker in async methods.

60 | Chapter 9: Exceptions in Async Code

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Parallelism Using Async

Async provides a great opportunity to start making more use of the parallelism of
modern machines. The language feature makes previously difficult approaches to
structuring programs easier.

For starters, we’ve already seen we can write simple code that starts multiple long-
running operations, for example network requests, which then proceed in parallel.
Using tools like WhenAll, async code can be very efficient at this kind of operation—
one that doesn’t involve local computation. However, when local computation is in-
volved, async on its own doesn’t help. Until a source of asynchrony is reached, all the
code you write runs synchronously on the calling thread.

await and locks
The simplest way to introduce parallelism is to schedule work in different threads.
Task.Run makes this easy, and because it returns a Task, we can treat it like any other
long-running operation. But using multiple threads introduces risks of unsafe access
to shared objects in memory.

The traditional solution of the lock keyword is more complicated when using async,
as we discussed in “lock Blocks” on page 29. The await keyword can’t be used in a
lock block, so there’s no way to prevent execution of conflicting code while you’re
awaiting something. In fact, it’s best to avoid reserving any resources across an await
keyword. The whole point of async is that resources are released while awaiting, and
as programmers, we need to be aware that anything can happen at that time.

lock (sync)
{
 // Prepare for async operation
}

int myNum = await AlexsMethodAsync();

lock (sync)
{

61

www.it-ebooks.info

http://www.it-ebooks.info/

 // Use result of async operation
}

A useful example is the UI thread. There is only one UI thread, so in a way it acts as a
lock. As long as you know that your code runs on the UI thread, only one line of your
code is ever executing at once. But even then, anything can happen while awaiting. If
you started a network operation because the user pressed a button, they are at liberty
to press another button while your code is awaiting. That’s exactly the point of async
in UI applications: the UI is responsive, and will do whatever the user asks, even if it’s
dangerous.

But at least with async, we can choose the points in the program where other things
can take place. We have to learn to put awaits at safe places, and expect the state of
the world to have changed after resuming. Sometimes that means making a second,
seemingly pointless, check about whether to proceed.

if (DataInvalid())
{
 Data d = await GetNewData();

 // Anything could have happened in the await
 if (DataInvalid())
 {
 SetNewData(d);
 }
}

Actors
I said the UI thread is like a lock, simply because there’s only one of it. In fact, a better
way of putting it is to say it’s an actor. An actor is a thread which has responsibility for
a particular set of data, and no other thread may access the data. In this case, only the
UI thread may access the data that makes up the UI. That means it’s much easier to
maintain safety in UI code, the only place where anything could happen is an await.

More generally, you can build programs from components which operate in one thread
and look after some data. This is actors programming. It enables you to make use of
parallel computers, as each actor can use a different core. It’s effective for general pro-
gramming, where the different components have state that needs to be maintained
safely.

Other techniques, for example dataflow programming, are very effective
for embarrassingly parallel problems, where there are many computa-
tions that don’t depend on each other and can be parallelized in an
obvious way. Actors are the right choice when this isn’t obvious.

62 | Chapter 10: Parallelism Using Async

www.it-ebooks.info

http://www.it-ebooks.info/

At first, programming using actors may sound a lot like programming using locks. They
share the concept of only one thread being allowed access to one piece of data. But the
difference is that one thread may never be in multiple actors at once. Instead of a thread
holding the resources of one actor while it executes code in another actor, it must make
an asynchronous call. The calling actor is then free to do other things while waiting.

Actors are an inherently more scalable way of programming than using locks with
shared memory. Multiple cores accessing a single memory address space is a model
that is becoming increasingly detached from reality. If you’ve ever programmed with
locks, you’ll know the pain of deadlocks and race conditions that are so easy to intro-
duce in locking code.

Using Actors in C#
Of course, you can use an actors style of programming manually, but there are libraries
that make it simpler. NAct is one that makes full use of async in C# to allow ordinary
objects to become actors, so that calls to them are moved onto their own thread. It does
this with a proxy that wraps the object, turning it into an actor.

Let’s look at an example. Perhaps I am implementing a cryptography service that needs
a series of pseudo-random numbers to use while encrypting a stream of data. There are
two kinds of compute-intensive work here, so I’d like to be able to do them in parallel:

• Generating the random numbers

• Using them to encrypt the stream

We’ll just look at implementing the random number generator actor. NAct needs an
interface which we’ll implement, and then NAct will create a proxy for.

public interface IRndGenerator : IActor
{
 Task<int> GetNextNumber();
}

The interface must implement IActor, which is just an empty marker interface. All the
methods of the interface must return one of the asynchronous compatible return types:

• void

• Task

• Task<T>

Then, we can implement the generator class itself.

Using Actors in C# | 63

www.it-ebooks.info

http://code.google.com/p/n-act/
http://www.it-ebooks.info/

class RndGenerator : IRndGenerator
{
 public async Task<int> GetNextNumber()
 {
 // Generate a secure random number - slow
 ...
 return num;
 }
}

The only surprise here is that there’s nothing surprising. It’s just a normal class. To use
it, we must construct one, and give it to NAct to wrap up, creating an actor.

IRndGenerator rndActor = ActorWrapper.WrapActor(new RndGenerator());

Task<int> nextTask = rndActor.GetNextNumber();
foreach (var chunk in stream)
{
 int rndNum = await nextTask;

 // Get started on the next number
 nextTask = rndActor.GetNextNumber();

 // Use rndNum to encode chunk - slow
 ...
}

Each iteration through the encoding I await a random number, then begin the process
of generating the next before doing the slow work myself. Because rndActor is an actor,
NAct will return the Task immediately, and run the generation in the RndGenerator’s
thread. Now, the two kinds of computation will proceed in parallel, making better use
of the CPU. The async language features have made this previously difficult program-
ming style very natural.

This isn’t the place for more details about how to use NAct, but I hope I’ve given you
enough to see how simple the actors model is to use. Other features like firing events
on the correct thread, and intelligently sharing threads between idle actors mean that
it scales to real-world systems.

Task Parallel Library Dataflow
Another useful tool for parallel programming that is easier to use with C# async is
dataflow programming. In this model, you specify a series of operations that need to
happen to input data, and the system will parallelize them automatically. Microsoft
provides a library for this called TPL Dataflow, which is available on NuGet.

64 | Chapter 10: Parallelism Using Async

www.it-ebooks.info

https://nuget.org/packages/Microsoft.Tpl.Dataflow
http://www.it-ebooks.info/

Dataflow programming is a particularly useful technique when the most
performance critical part of your program is a data transformation.
There’s nothing stopping you using both actors and dataflow program-
ming, where one actor which has a heavy computational load uses
dataflow to parallelize it.

TPL Dataflow is concerned with pushing messages between blocks. To create a dataflow
network, you string together blocks which implement two interfaces:

ISourceBlock<T>
Something which you can ask for messages of type T

ITargetBlock<T>
Something which you can give messages

The ISourceBlock<T> interface has a method LinkTo, which takes an ITargetBlock<T>
and ties them together, so every message produced by the ISourceBlock<T> is given to
the ITargetBlock<T>. Most blocks implement both interfaces, perhaps with different
type parameters, so that they consume one kind of message and produce another.

While you can implement these interfaces yourself, it’s much more normal to use the
built-in blocks, for example:

ActionBlock<T>
When you construct an ActionBlock<T>, you pass it a delegate, and it performs that
delegate for every message. ActionBlock<T> only implements ITargetBlock<T>.

TransformBlock<TIn, TOut>
Similarly, you pass a delegate to the constructor, but this time the delegate is a
function that returns a value. That value becomes a message passed to the next
block. TransformBlock<TIn, TOut> implements both ITargetBlock<TIn> and ISour
ceBlock<TOut>. It is the parallel version of a LINQ Select.

JoinBlock<T1, T2,...>
This joins multiple input streams into a single output stream of tuples.

There are many other built-in blocks, and with them you can implement any conveyor-
belt style computation. Out of the box, the blocks act as a pipeline in parallel, but each
block will only process one message at a time. That’s fine if most of your blocks take a
similar length of time, but if an individual stage is slower than the rest, you can configure
ActionBlock<T>s and TransformBlock<TIn, TOut> to work in parallel within the indi-
vidual block, effectively splitting itself into many identical blocks and sharing the work.

Task Parallel Library Dataflow | 65

www.it-ebooks.info

http://www.it-ebooks.info/

TPL dataflow is improved by async because the delegates passed to ActionBlock<T>s
and TransformBlock<TIn, TOut>s can be async, and can return Task or Task<T> respec-
tively. When those delegates involve long-running remote operations, this is very
important, as those long running operations can be run in parallel without wasting
threads. Also, when interacting with dataflow blocks from the outside, it’s useful to do
so in an asynchronous way, so there are TAP methods like the SendAsync extension
method on ITargetBlock<T> to make that easy.

66 | Chapter 10: Parallelism Using Async

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Unit Testing Async Code

I’d like to look briefly at how to unit test async code. The simplest approach doesn’t
work well, but it can be easy to write good tests that call async methods, depending on
support from your unit test framework.

The Problem with Unit Testing in Async
Async methods return quickly, usually returning a Task that completes at some point
in the future. To consume them, we’d normally use await, so let’s experiment with that
approach in a unit test.

[TestMethod]
public async void AlexsTest()
{
 int x = await AlexsMethod();
 Assert.AreEqual(3, x);
}

To allow us to use await, I’ve also marked my test method async. But that has a very
important side effect. Now, the test method also returns quickly and completes at some
point in the future. In fact, the test method returned without throwing any exceptions
as soon as it reaches the await, so the test framework, in this case MSTest, marks it as
a pass.

Because the test method is async void, any exceptions that happen in it are rethrown
on the calling SynchronizationContext, where they are either ignored, or cause an
unrelated future test to fail.

The real danger here is that all your tests will appear to pass, irrespective of the actual
result.

67

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Working Async Tests Manually
One way to avoid this problem is to avoid making your test methods async. Instead,
we have to wait synchronously for the result of any async calls they make.

[TestMethod]
public void AlexsTest()
{
 int x = AlexsMethod().Result;
 Assert.AreEqual(3, x);
}

The Result property waits for the Task to complete before proceeding, blocking the
thread. This works fine, and the test can now fail if it needs to. If an exception is thrown
during AlexsMethod, it will be rethrown by Result, although unlike when rethrown by
an await, it will still be wrapped by an AggregateException.

By now, it should feel ugly to use the blocking Result of a Task. It is a dangerous thing
to do, as we saw in “Interacting with Synchronous Code” on page 52 when in a single-
threaded SynchronizationContext. Luckily, no popular desktop test frameworks use a
single-threaded SynchronizationContext by default. Still, this solution wastes a thread
and doesn’t perform optimally because of it.

Using Unit Test Framework Support
Some unit test frameworks support async explicitly. They allow you to create test
methods which return Task, so you can write async test methods. The framework will
wait for the Task to complete before marking it as a pass and moving onto the next test.

At the time of writing, xUnit.net and MSTest support this style. I expect
the other popular frameworks will add it in time, or make it possible
with a small extension.

[TestMethod]
public async Task AlexsTest()
{
 int x = await AlexsMethod();
 Assert.AreEqual(3, x);
}

This is arguably the neatest way to write unit tests for async code, pushing the respon-
sibility for threads into the testing framework.

68 | Chapter 11: Unit Testing Async Code

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Async in ASP.NET Applications

The majority of .NET developers write web applications. Async brings some new per-
formance possibilities to web server code, so we’ll look at how to use async within web
applications.

Advantages of Asynchronous Web Server Code
On a web server, responsiveness during a request isn’t an issue in the same way that it
is in UI code. Instead, the performance of a web server is measured by its throughput
and latency, and how consistent those are.

Asynchronous code, on a heavily loaded web server, requires fewer threads than syn-
chronous code to do the same amount of work. Each thread has a large memory over-
head, and the bottleneck for web servers is often memory capacity. When memory is
scarce, the garbage collector has to run more often, and usually does more work in
total. If the memory used doesn’t fit into the physical memory of the server, it has to
be paged to a disk, which can be very slow if the memory is used again soon.

It’s been possible to write asynchronous web server code in ASP.NET since version 2.0,
but doing so was difficult without language support. For most people, the option to
add more servers and load balance between them was more cost effective. With C# 5
and .NET 4.5, it becomes easy enough that it’s worth everyone taking advantage of the
efficiency.

Using Async in ASP.NET MVC 4
ASP.NET MVC 4 and later, when run on .NET 4.5 or later, has full support for the
Task-based Asynchronous Pattern, so we can use async methods. The important place
for asynchrony in an MVC application is the controller. You can simply use an async
method to return a Task<ActionResult> from your controller methods:

69

www.it-ebooks.info

http://www.it-ebooks.info/

public class HomeController : Controller
{
 public async Task<ActionResult> Index()
 {
 ViewBag.Message = await GetMessageAsync();

 return View();
 }
...

This relies on the fact that the long-running requests you want to make provide an
asynchronous API for you to call. Many object relational mappers (ORMs) don’t sup-
port asynchronous calls yet, but the .NET framework’s SqlConnection API does.

Using Async in Older Versions of ASP.NET MVC
Before MVC 4, the support for asynchronous controllers isn’t based on the TAP, and
is more involved. Here is a way to adapt an MVC 4 style TAP controller method to the
pattern used in older versions of MVC.

public class HomeController : AsyncController
{
 public void IndexAsync()
 {
 AsyncManager.OutstandingOperations.Increment();
 Task<ActionResult> task = IndexTaskAsync();
 task.ContinueWith(_ =>
 {
 AsyncManager.Parameters["result"] = task.Result;
 AsyncManager.OutstandingOperations.Decrement();
 });
 }

 public ActionResult IndexCompleted(ActionResult result)
 {
 return result;
 }

 private async Task<ActionResult> IndexTaskAsync()
 {
...

First, the controller must derive from AsyncController rather than Controller, which
enables it to use an asynchronous pattern. That pattern means that for every action,
there are two methods, one named ActionAsync and one named ActionCompleted.
AsyncManager controls the lifetime of an asynchronous request. When Outstanding
Operations is decremented to zero, ActionCompleted is called. We consume the Task
manually using ContinueWith, and pass the result to the ActionCompleted method with
a dictionary called Parameters.

I’ve neglected exceptions in this example to keep it simpler. All in all, very ugly, but
once this is done, you can use async as you would normally.

70 | Chapter 12: Async in ASP.NET Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Using Async in ASP.NET Web Forms
Standard ASP.NET and Web Forms don’t have a version separate to the .NET frame-
work version on which they run. In .NET 4.5, ASP.NET supports async void methods
on your Page, for example Page_Load.

protected async void Page_Load(object sender, EventArgs e)
{
 Title = await GetTitleAsync();
}

You may find this an odd implementation. How does ASP.NET know when the async
void method completes? It would have made more sense to return a Task, which
ASP.NET could then wait for before rendering the page, much like in MVC 4. However,
presumably for backward compatibility reasons, it requires that methods return void.
Instead, ASP.NET uses a special SynchronizationContext that keeps track of asynchro-
nous operations and only moves on when they are all completed.

Take care when running asynchronous code in the ASP.NET Synchronization
Context, because it is single-threaded. If you use a blocking wait on a Task, for example
the Result property, the chances are that you will cause a deadlock, as deeper awaits
won’t be able to use the SynchronizationContext to resume.

Using Async in ASP.NET Web Forms | 71

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Async in WinRT Applications

For those who aren’t already familiar with WinRT, I’ll give a brief overview of the
technology before moving on to explore how async and WinRT work together.

What Is WinRT?
WinRT (or Windows Runtime) is a group of APIs that are used in Windows 8 appli-
cations that run on Windows 8 and Windows RT for ARM processors. One of the
design goals of the WinRT APIs is responsiveness, achieved by asynchronous
programming. All methods that could take longer than 50ms are asynchronous.

It is designed to be used uniformly from three completely different technology
stacks: .NET, JavaScript, and native code (usually C++). To achieve this, the APIs are
all defined in a common metadata format called WinMD. Each of the languages can
then compile against the WinMD definition of the API, without any need for a language-
specific wrapper. This system is called projection, where each compiler or interpreter
projects the WinRT type to be used as a normal type in the language.

WinMD is based on the .NET assembly metadata format, so the con-
structs that are available are very similar to .NET: classes interfaces,
methods, properties, attributes, etc. There are differences, though; for
example, generic types are legal, but generic methods aren’t.

The majority of WinRT is implemented in native code, but you can also write WinRT
components in C#, which you or others can then consume from any of the supported
languages.

Because the WinRT interfaces are not .NET, the API provided by your WinRT
component can’t use a lot of .NET types. Many collection interfaces are projected
automatically; for example, IList<T>. However, Task is not, because it has too
much .NET-specific behavior.

73

www.it-ebooks.info

http://www.it-ebooks.info/

IAsyncAction and IAsyncOperation<T>
These two interfaces are the WinRT equivalents of Task and Task<T> respectively.
WinRT asynchronous methods use a pattern similar to the Task-based Asynchronous
Pattern, but return IAsyncAction or IAsyncOperation<T>. The two interfaces work very
similarly to each other, so for the rest of this chapter, I mean both when I refer to either
one.

Here is an example method in the WinRT type SyndicationClient which gets an RSS
feed.

IAsyncOperation<SyndicationFeed> RetrieveFeedAsync(Uri uri)

Remember that IAsyncAction and IAsyncOperation<T> are not .NET
interfaces, they are WinMD interfaces. The distinction is a little con-
fusing, because they can be used from C# as if they were normal .NET
interfaces.

Just like TAP methods, this kind of WinRT method begins immediately and returns
the IAsyncOperation<T>, which acts as a promise of a future SyndicationFeed. The
await keyword can be used on IAsyncOperation<T> in exactly the same way as Task, so
you can use RetrieveFeedAsync like this:

SyndicationFeed feed = await rssClient.RetrieveFeedAsync(url);

await can be used on any type which contains a specific pattern of methods that provide
the behavior needed. Task has those methods, but IAsyncOperation<T> doesn’t. How-
ever, the pattern can be fulfilled using extension methods, so .NET provides those
extension methods on IAsyncOperation<T> to make await work.

You may need access to a Task representing the asynchronous WinRT call; for example,
to pass to a combinator like Task.WhenAll or to use ConfigureAwait. To create one, there
is another extension method on IAsyncOperation<T> called AsTask:

Task<SyndicationFeed> task = rssClient.RetrieveFeedAsync(url).AsTask();

Using AsTask, you get a normal Task, which you can use in any way you like.

Cancellation
The WinRT version of the TAP chose a different design for cancellation. Whereas
in .NET TAP, we pass a CancellationToken as an extra parameter, in WinRT cancella-
tion is built into the returned IAsyncOperation<T>.

IAsyncOperation<SyndicationFeed> op = rssClient.RetrieveFeedAsync(url);
op.Cancel();

74 | Chapter 13: Async in WinRT Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Because it’s built in, all asynchronous WinRT methods expose the ability to cancel.
Whether they all actually stop when Cancel is called is a different question, and I imag-
ine some don’t.

This design has benefits and disadvantages when compared to the
CancellationToken approach, so it’s not surprising that one was chosen
for TAP while the other was chosen for WinRT. CancellationToken
makes it easier to propagate a single CancellationToken to many meth-
ods, while putting cancellation into the returned promise type makes
the API cleaner.

You shouldn’t normally use this Cancel method directly, though, because the AsTask
extension method has an overload that takes a standard .NET CancellationToken and
hooks everything up for you.

... = await rssClient.RetrieveFeedAsync(url).AsTask(cancellationToken);

Now you can use CancellationTokenSource as normal.

Progress
Again, progress in asynchronous WinRT methods uses a different design to the TAP.
In WinRT, the ability to return progress is built into the returned promise type.
Progress, however, is optional, so methods that can give progress updates return
specialized interfaces:

• IAsyncActionWithProgress<TProgress>

• IAsyncOperationWithProgress<T, TProgress>

These correspond in the obvious way to IAsyncAction and IAsyncOperation<T>, and are
similar to those interfaces, but add an event that fires when progress changes.

The best way to subscribe to that progress is, again, to use an overload of AsTask, which
takes a standard .NET IProgress<T> and hooks it up for you.

... = await rssClient.RetrieveFeedAsync(url).AsTask(progress);

Of course, there’s also an overload that takes both a CancellationToken and an
IProgress<T>, in case you need both.

Providing Asynchronous Methods in a WinRT Component
The power of WinRT comes from the way that the libraries provided can be used
equally easily from any of the supported languages. If you write your own libraries to
run under WinRT, you might want to take advantage of that same power by compiling
your library as a WinRT component rather than a .NET assembly.

Providing Asynchronous Methods in a WinRT Component | 75

www.it-ebooks.info

http://www.it-ebooks.info/

That’s very easy to do in C#, but the public interface of your component must only
use types that are either WinMD types or automatically projected by the compiler
to WinMD types. Again, Task is neither of these, so we need to return an
IAsyncOperation<T> instead.

public IAsyncOperation<int> GetTheIntAsync()
{
 return GetTheIntTaskAsync().AsAsyncOperation();
}

private async Task<int> GetTheIntTaskAsync()
{
...

Extension methods provided by .NET make life easy once again. AsAsyncOperation does
exactly what we need in the simple case, turning a Task<T> into an IAsync
Operation<T>. Correspondingly, AsAsyncAction will turn a Task into an IAsyncAction.

As a bonus, AsTask and AsAsyncOperation are aware of each other, and
can detect whether both the implementer and consumer of the WinMD
method are .NET code. If they are, the original Task is returned directly,
improving performance.

When cancellation or progress are needed, AsAsyncOperation isn’t powerful enough.
TAP methods need a CancellationToken or IProgress<T> as they are called, so an ex-
tension method on Task can’t possibly handle them. To convert between the different
models, we need a more complex tool called AsyncInfo.Run.

public IAsyncOperation<int> GetTheIntAsync()
{
 return AsyncInfo.Run(cancellationToken =>
 GetTheIntTaskAsync(cancellationToken));
}

private async Task<int> GetTheIntTaskAsync(CancellationToken ct)
{
...

AsyncInfo.Run takes a delegate, which allows it to pass a CancellationToken, an IPro
gress<T>, or both, to your lambda. You can then pass those into your TAP method.
You can think of AsAsyncOperation as a shortcut to the simplest overload of
AsyncInfo.Run, whose delegate takes no parameters.

76 | Chapter 13: Async in WinRT Applications

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14

The Async Compiler Transform—
in Depth

Async is implemented in the C# compiler with some help from the .NET framework
base class libraries. The runtime itself didn’t need any changes to support async. That
means await is implemented by a transformation to something that we could have
written ourselves in earlier versions of C#. We can use a decompiler like .NET Reflector
to take a look at the generated code.

As well as being interesting, understanding the generated code is helpful for debugging,
performance analysis, and other diagnostics on async code.

The stub Method
The async method is replaced by a stub method. The first thing that happens when you
call an async method is that the stub method runs. Let’s look at this simple async
method as an example:

public async Task<int> AlexsMethod()
{
 int foo = 3;
 await Task.Delay(500);
 return foo;
}

The stub method generated by the compiler looks like this:

public Task<int> AlexsMethod()
{
 <AlexsMethod>d__0 stateMachine = new <AlexsMethod>d__0();
 stateMachine.<>4__this = this;
 stateMachine.<>t__builder = AsyncTaskMethodBuilder<int>.Create();
 stateMachine.<>1__state = -1;
 stateMachine.<>t__builder.Start<<AlexsMethod>d__0>(ref stateMachine);
 return stateMachine.<>t__builder.Task;
}

77

www.it-ebooks.info

http://www.it-ebooks.info/

I’ve manually improved the names of the variables to make it easier to understand.

As we saw in “Async, Method Signatures, and Interfaces” on page 22, the async key-
word has no effect on how the method is used from the outside. That becomes obvious
when you see that the signature of the stub method is always just the same as the original
async method, but without the async keyword.

You’ll notice that none of my original code is in the stub method. Most of the stub
method consists of initializing the variables of a struct, called <AlexsMethod>d__0. That
struct is a state machine and is where all the hard work is done. The stub method calls
a method Start, then it returns a Task. To understand what is happening, we need to
look inside the state machine struct itself.

The State Machine Struct
The compiler generates a struct that acts as a state machine and contains all the code
of my original method. It does this so that there is an object capable of representing the
state of the method, which can be stored when execution reaches an await. Remember
that when we reach an await, everything about where we are in the method is remem-
bered, so it can be restored when the method is resumed.

Although it would be feasible for the compiler to go through and store each local vari-
able of your method when it pauses, it would be a lot of generated code. A better way
is to change all the local variables of your method into member variables of a type, so
we can just store the instance of the type and all the local variables will automatically
be kept as well. That’s exactly what this struct is for.

The state machine is a struct rather than a class for performance reasons.
It means that when an async method completes synchronously, it
doesn’t need to be allocated to the heap. Unfortunately, being a struct
makes it harder for us to reason about.

The state machine is generated as an inner struct of the type containing the async
method. That makes it easy to work out which method it was generated from, but is
primarily so it can access the private members of your type.

Let’s look at the state machine struct <AlexsMethod>d__0 generated for our example.
For now, we’ll concentrate on the member variables:

public int <>1__state;
public int <foo>5__1;
public AlexsClass <>4__this;
public AsyncTaskMethodBuilder<int> <>t__builder;
private object <>t__stack;
private TaskAwaiter <>u__$awaiter2;

78 | Chapter 14: The Async Compiler Transform—in Depth

www.it-ebooks.info

http://www.it-ebooks.info/

All the variables have angle brackets in their names. That’s just to mark
them as compiler generated. It is important in other compiler generated
code, which has to coexist with user code because angle brackets can’t
be used in variables in valid C#. Here, it’s not really necessary.

First, the state variable, <>1__state, is a place to store the await we have reached. Before
we reach any await, its value is -1. Each await in the original method is numbered, and
when the method is paused, the number of the await to resume from is written to the
state variable.

Next is <foo>5__1, which stores the value of my original variable foo. We’ll see soon
that all accesses to my foo have been replaced by accesses to this member variable
instead.

Then, we have <>4__this. This only appears in the state machine for non-static async
methods and contains the object that the async method was part of. In a way, you can
think of this as just another local variable in a method, which happens to be used
implicitly when you access other members of the same object. After the async trans-
formation, it needs to be stored and used explicitly, because my code has been moved
from its original object to the state machine struct.

The AsyncTaskMethodBuilder is a helper type that contains the logic that all of these
state machines share. This is what creates the Task that is returned by the stub method.
In fact, its job is very similar to TaskCompletionSource, in that it creates a puppet Task
to return, which it can complete later. The difference from TaskCompletionSource is that
it is optimized for async methods, and uses tricks like being a struct rather than a class
for performance.

Async methods that return void use AsyncVoidMethodBuilder as their
helper, while async methods that return Task<T> use a generic version,
AsyncTaskMethodBuilder<T>.

The stack variable, <>t__stack, is used for awaits which are part of a larger expres-
sion. .NET intermediate language (IL) is a stack-based language, so complex
expressions are built of small instructions which manipulate a stack of values. When
the await is in the middle of that kind of complex expression, the current values in the
stack are placed in this stack variable, inside a Tuple if there is more than one.

Finally, the TaskAwaiter variable is temporary storage for the object that helps the
await keyword to sign up for notification when the Task completes.

The State Machine Struct | 79

www.it-ebooks.info

http://www.it-ebooks.info/

The MoveNext Method
The state machine always has a method called MoveNext, where all your original code
ends up. This method is called both when the method is first run and when we resume
from an await. Even for the simplest async method, it is overwhelmingly complex to
look at, so I’ll try to explain the transformation as a series of steps. I’ll also skip over
some less relevant details, so this description is not completely accurate in a lot of
places.

The method was called MoveNext originally because of its similarity to
the MoveNext methods generated by iterator blocks in earlier versions of
C#. Those implement IEnumerable in a single method using the yield
return keyword. The state machine system used there is similar to the
async state machine, although simpler.

Your Code
The first step is to copy your code into the MoveNext method. Remember that any
accesses to variables need to change to point at the new member variable of the state
machine instead. Where the await was, I’ll leave a gap which we’ll need to fill later.

<foo>5__1 = 3;
Task t = Task.Delay(500);
Logic to await t goes here
return <foo>5__1;

Transforming Returns to Completions
Every return statement in the original code needs to be converted to code that will
complete the Task that was returned by the stub method. In fact, MoveNext returns
void, so our return foo; isn’t even valid.

<>t__builder.SetResult(<foo>5__1);
return;

Of course, after completing the Task, we use return; to exit from MoveNext.

Get to the Right Place in the Method
Because MoveNext is called to resume from each await, as well as when the method is
first started, we need to start by jumping to the right place in the method. This is done
using IL similar to that generated by a switch statement, as if we are switching on the
state.

80 | Chapter 14: The Async Compiler Transform—in Depth

www.it-ebooks.info

http://www.it-ebooks.info/

switch (<>1__state)
{
 case -1: // Right at the start of the method
 <foo>5__1 = 3;
 Task t = Task.Delay(500);
 Logic to await t goes here
 case 0: // There's only one await, so it is number 0
 <>t__builder.SetResult(<foo>5__1);
 return;
}

Pausing the Method for the await
This is where we use the TaskAwaiter to sign up for notification of when the Task we’re
awaiting completes. We need to update the state to make sure we resume at the right
point. Once everything is signed up and ready, we return, releasing the thread to do
other things as a good asynchronous method must.

...
 <foo>5__1 = 3;
 <>u__$awaiter2 = Task.Delay(500).GetAwaiter();
 <>1__state = 0;
 <>t__builder.AwaitUnsafeOnCompleted(<>u__$awaiter2, this);
 return;
case 0:
...

The AsyncTaskMethodBuilder is also involved in signing up for notification, and the
process is complicated. This is where advanced features of await are organized, like
capturing a SynchronizationContext to use to resume. But the end result is easy to
understand. When the Task completes, our MoveNext method will be called again.

Resuming after the Await
Once the Task we were awaiting completes, and we’re back at the right point of the
MoveNext method, we still need to get the result of the Task before proceeding with my
code. In this example, we are using a non-generic Task, so there’s no value to read into
a variable. But there’s still the chance that the Task is faulted, and an exception needs
to be thrown. Calling GetResult on the TaskAwaiter does all this.

...
case 0:
 <>u__$awaiter2.GetResult();
 <>t__builder.SetResult(<foo>5__1);
...

Completing Synchronously
Remember that when await is used on a Task that already completed synchronously,
execution should proceed without having to pause and resume the method. To achieve

The MoveNext Method | 81

www.it-ebooks.info

http://www.it-ebooks.info/

that, we need to check whether the Task is completed before returning. If it is, we just
use goto case to jump to the right place to continue.

...
<>u__$awaiter2 = Task.Delay(500).GetAwaiter();
if (<>u__$awaiter2.IsCompleted)
{
 goto case 0;
}
<>1__state = 0;
...

The great thing about compiler-generated code is that no one has to
maintain it, so you can use goto as much as you like. I had previously
never heard of goto case statements, and that’s probably a good thing.

Catching Exceptions
If an exception is thrown during the execution of your async method, and there’s no
try..catch block to handle it, the compiler-generated code will catch it instead. It does
this so it can set the returned Task to faulted, rather than letting the exception escape.
Remember that the MoveNext method can be called from either the original caller of the
async method, or by an awaited Task that has completed, possibly via a Synchroniza
tionContext. None of these are expecting an exception to escape.

try
{
 ... Whole method
}
catch (Exception e)
{
 <>t__builder.SetException(<>t__ex);
 return;
}

More Complicated Code
My example was very simple. The MoveNext method becomes much more complicated
if you introduce features like:

• try..catch..finally blocks

• Branches (if and switch)

• Loops

• Using await in the middle of an expression

82 | Chapter 14: The Async Compiler Transform—in Depth

www.it-ebooks.info

http://www.it-ebooks.info/

The compiler transform does handle all of these constructs correctly, so as the pro-
grammer, you don’t need to worry about how complex they would be.

I would encourage you to use a decompiler to look at a MoveNext method for one of
your own async methods. Try to spot the simplifications I’ve made in this description,
and work out how more complex code is transformed.

Writing Custom Awaitable Types
Task is an awaitable type, in that you can apply await to it. As we saw in “IAsyncAction
and IAsyncOperation<T>” on page 74, other types can also be awaitable, for example
the WinRT type IAsyncAction. In fact, although you should never need to, it’s possible
to write your own awaitable types.

To be awaitable, the type needs to provide the abilities used by the MoveNext method
that we just saw. First, it needs to have a method called GetAwaiter:

class MyAwaitableClass
{
 public AlexsAwaiter GetAwaiter()
 {
 ...

That GetAwaiter method can be an extension method, which is a really important flex-
ibility. For example, IAsyncAction doesn’t have a GetAwaiter method, because it is from
WinRT, and WinRT has no concept of awaitable types. IAsyncAction becomes await-
able because an extension method GetAwaiter is provided by .NET.

Then, the type returned by GetAwaiter has to follow a specific pattern in order that
MyAwaitableClass is considered awaitable. The minimum required is:

• It implements INotifyCompletion, so it contains a method void OnCompleted(Action
handler), which signs up for notification of completion

• It contains a property bool IsCompleted { get; }, which is used to check for
synchronous completion

• It contains a method T GetResult(), which returns the result of the operation, and
throws any exceptions

The return type T of GetResult can be void, like it is for Task. Alternatively, it can be a
real type, like it is for Task<T>. Only in the second case will the compiler let you use the
await as an expression—for example, by assigning the result to a variable.

Here’s what AlexsAwaiter might look like:

Writing Custom Awaitable Types | 83

www.it-ebooks.info

http://www.it-ebooks.info/

class AlexsAwaiter : INotifyCompletion
{
 public bool IsCompleted
 {
 get
 {
 ...
 }
 }

 public void OnCompleted(Action continuation)
 {
 ...
 }

 public void GetResult()
 {
 ...
 }
}

It’s important to remember that TaskCompletionSource exists, and that it’s usually a
much better option when you need to turn something asynchronous into something
awaitable. Task has a lot of useful features and you don’t want to miss out on them.

Interacting with the Debugger
You might think that after the compiler has moved your code around so much, the
Visual Studio debugger would have trouble making sense of it to show you what’s
happening. In fact, the debugging experience is very good. This is primarily achieved
by the compiler linking the lines in your source code with the parts of the MoveNext
method that were converted from your code. This mapping, stored in the .pdb file,
means that these features of the debugger work normally:

• Setting breakpoints

• Stepping between lines that don’t include an await

• Viewing the correct line where an exception was thrown

However, if you look closely while stopped at a breakpoint after an await in an async
method, you can see that the compiler transform has taken place. The clues are:

• The name of the current method will appear to be MoveNext in some places. The
Call Stack window translates it back to the original method name successfully, but
Intellitrace doesn’t.

• The Call Stack window shows that the call stack contains frames from the TPL
infrastructure, followed by [Resuming Async Method], followed by your method.

84 | Chapter 14: The Async Compiler Transform—in Depth

www.it-ebooks.info

http://www.it-ebooks.info/

The real magic is stepping through the code. In a heroic effort, the Visual Studio
debugger can correctly Step Over (F10) an await, despite the method continuing an
indeterminate time in the future on an indeterminate thread. You can see the infra-
structure that went into this ability in AsyncTaskMethodBuilder, which has a property
called ObjectIdForDebugger. The debugger can also Step Out (Shift+F11) from an async
method, which will take you to just after the await, which is currently waiting for it to
complete.

Interacting with the Debugger | 85

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15

The Performance of Async Code

When you choose to use async code, you’re probably thinking about performance.
Whether that’s the responsiveness of a UI application, the throughput of a server, or
enabling parallelism using actors, you need to know that the change is actually going
to be worthwhile.

To think about the performance of async code, you have to look at it in comparison to
the alternatives that are relevant in each situation. In this chapter, we will consider:

• Situations with a long-running operation that has the potential to be executed
asynchronously

• Situations with no long-running operation, where there’s no opportunity to
execute asynchronously

• Comparisons of async code against standard code, which blocks during long-
running operations

• Comparisons of async code against manual asynchronous code

We’ll also discuss a few optimizations that can be useful if you find that the extra
overhead of the async machinery is causing a performance problem in your application.

Measuring Async Overhead
The machinery of async methods inevitably uses more processor cycles than the equiv-
alent synchronous code, and the switches between threads add extra latency. It’s
impossible to measure the performance overhead of an async method exactly. The
performance in your application depends on what other threads are doing, cache be-
havior, and other unpredictable factors. There’s also a distinction between processor
usage and added latency, since an asynchronous system can easily add time to an
operation without using the CPU, while a request is waiting in a queue to be executed.

87

www.it-ebooks.info

http://www.it-ebooks.info/

So I’ll just give you an order of magnitude analysis to the nearest factor of 10. I’ll use
the cost of a normal method call as a baseline for comparisons. My laptop can call a
method roughly 100 million times per second.

Async Versus Blocking for a Long-Running Operation
The usual reason to use async code is a long-running operation that you can execute
asynchronously, freeing up resources. In UI code, unless that operation is sure to be
quick, it’s usually worth using async to keep the UI responsive. In server-side code, the
trade-off is much more subtle, as you are trading the extra memory footprint of blocked
threads for the extra processor overhead of the async methods.

The overhead of an async method which actually executes asynchronously depends
entirely on whether it needs to switch threads using SynchronizationContext.Post. If it
does, the overhead is dominated by the thread switch it performs as it resumes. That
means that the current SynchronizationContext makes a big difference. I’ve measured
this overhead by running this method, which does nothing but await Task.Yield, which
always completes asynchronously:

async Task AlexsMethod()
{
 await Task.Yield();
}

Table 15-1. Overhead to execute and resume an async method

SynchronizationContext Cost (compared to an empty method)

No Post needed 100

Thread pool 100

Windows forms 1,000

WPF 1,000

ASP.NET 1,000

Whether we need to pay to switch threads depends on the SynchronizationContext of
the original caller, as well as the SynchronizationContext of the thread which completed
our Task.

• If they are the same, there’s no need to Post to the original Synchronization
Context, and the method can be resumed by the thread that completed the Task,
synchronously, as part of completing the Task.

• If the original caller had a SynchronizationContext, but not the same one as the
completion thread, we need to do the Post, incurring the high cost shown in the
table. This also happens if the completion thread has no SynchronizationContext.

• If the original caller had no SynchronizationContext—for example, in a console
application, then what happens depends on the SynchronizationContext of the

88 | Chapter 15: The Performance of Async Code

www.it-ebooks.info

http://www.it-ebooks.info/

completion thread. If there is a SynchronizationContext, .NET assumes that the
thread is important and schedules our method to resume on the thread pool. If the
completion thread has no SynchronizationContext, or just the default thread pool
one, it resumes our method on the same thread, synchronously.

In reality, the .NET thread pool is so fast that the overhead of switching
to it doesn’t even show up in my order of magnitude numbers, when
compared to resuming the method in the same thread. Given that, you
don’t really need to worry about the SynchronizationContext of the
completion thread.

These rules mean that a chain of async methods will tend to incur one expensive thread
switch, as the deepest method resumes. After that, the SynchronizationContexts will
be the same, and the rest of the methods can resume cheaply. The thread switch in a
UI context is one of the most expensive. However, in a UI application, the user’s ex-
perience is so bad if you don’t use async code that you don’t have a real choice. If you
are doing a network request that takes 500ms, it’s worth paying another millisecond
for a responsive UI.

Unfortunately, WPF recreates SynchronizationContext objects often, so
in a WPF context, a deep stack of async methods incurs the large cost
of a WPF Post for every method resumed. Windows forms and Win-
dows 8 applications don’t suffer from the same problem.

The trade-off requires more thought in server-side code—for example, ASP.NET
applications. Whether async code is worthwhile depends largely on whether your server
has a bottleneck in memory usage, because the biggest cost of using many threads is
memory. Many factors can cause your synchronous application to consume memory
faster than it consumes processor time, including:

• You call long-running operations that take a relatively long time

• You parallelize long-running operations by using extra threads

• Many requests call through to the long-running operations, rather than being
served by in-memory caches

• Generating the response doesn’t require very much processor time

The only way to really know is to measure the memory usage of your server. If the
memory usage is a problem, and the memory is being used by too many threads, async
is a good solution. It uses a little more CPU, but when the server is running out of
memory and has plenty of CPU, that’s no problem.

Async Versus Blocking for a Long-Running Operation | 89

www.it-ebooks.info

http://www.it-ebooks.info/

Remember that while async methods will always use more processor time than syn-
chronous methods, the difference is really quite small, and can easily be dominated by
anything else your application does.

Optimizing Async Code for a Long-Running Operation
If your async code runs truly asynchronously, as we’ve seen, the largest overhead is the
Post call to the calling SynchronizationContext, which causes a thread switch. As we
discussed in “Choosing Not to Use SynchronizationContext” on page 51, you can use
ConfigureAwait to opt out of that Post, to avoid paying the cost of the thread switch
until it’s really necessary. If your code is called in the WPF UI thread, it can be useful
to avoid the repeated Posts.

The other context of the calling thread, captured by the ExecutionContext class, is also
a source of overhead when writing async methods. As we saw in the section “Con-
text” on page 27, .NET will capture and restore the ExecutionContext at every await.
If you don’t use ExecutionContext, the process of capturing and restoring the default
context is heavily optimized, and very cheap. If you use any of the contexts captured
by ExecutionContext, it becomes much more expensive. So, avoid using CallContext,
LogicalCallContext, or impersonation in async code to improve performance.

Async Versus Manual Asynchronous Code
If you have existing UI code, it probably avoids responsiveness problems by some form
of manual asynchronous technique. There are a variety of possible approaches,
including:

• Creating a new thread

• Using ThreadPool.QueueUserWorkItem to do the long-running work on a back-
ground thread

• Using a BackgroundWorker

• Consuming an asynchronous API manually

All approaches involve at least one transfer back to the UI thread to present the result
to the user, in the same way that async does automatically. In some of these approaches,
this is implicit (for example, the RunWorkerCompleted event of BackgroundWorker), while
in some, you need to explicitly call a BeginInvoke method.

The difference in speed between these approaches is relatively small, apart from cre-
ating a new thread, which is much slower. Async is at least as fast as any of them, if
you avoid ExecutionContext. In fact, I find it a few percent faster than any other
approach.

Because it’s slightly faster, and because the code is more readable, I would always use
async in preference to any of these techniques.

90 | Chapter 15: The Performance of Async Code

www.it-ebooks.info

http://www.it-ebooks.info/

Async Versus Blocking Without a Long-Running Operation
A very common situation is to write a method that can take a long time occasionally,
but is very fast 99% of the time. One example is a network request with a cache, where
most requests can be served from the cache. The choice of whether to use async code
for this kind of operation could be dependent on the overhead in the common case
when the code completes synchronously rather than the overhead in the 1% of cases
where it actually uses the asynchronous network operation.

Remember that the await keyword won’t actually pause the method when it doesn’t
need to, in case it is given a Task that is already complete. The method containing that
await can then also finish synchronously, in turn returning a Task that is already com-
plete. In that way, entire chains of async methods can run synchronously.

Async methods, even when they run synchronously, are inevitably slower than their
non-async equivalents. And now, there’s no advantage to be gained through resources
being released. The so-called async method isn’t asynchronous, and the so-called
blocking method doesn’t block. However, the advantages of being asynchronous in the
1% of cases that the cache can’t serve the request could be so large that it’s worth writing
async code anyway.

It all depends on how much slower async code is than non-async code, when they both
return synchronously from a cache.

Again, this is really hard to measure accurately, because it depends so much on the
situation. I find that calling an empty async method is 10 times slower than calling an
empty non-async method.

It sounds slower than the non-async code, but remember, this is just the overhead. It
will almost always be dominated by the actual work you’re doing. For example, a
lookup in a Dictionary<string, string> also costs around the same as 10 empty
method calls.

Optimizing Async Code Without a Long-Running Operation
The overhead of an async method that completes synchronously, about 10 times the
cost of an empty non-async method, comes from a few different places. Most of it is
inevitable—for example, running the compiler-generated code, making its calls to the
framework, and losing optimizations that are impossible because of the exception han-
dling behavior of async methods.

The largest avoidable part of the overhead is the allocation of objects on the heap. It is
very cheap to actually allocate an object. However, allocating more objects means the
garbage collector needs to run more often, and it is expensive for an object to still be
in use during a garbage collection.

Optimizing Async Code Without a Long-Running Operation | 91

www.it-ebooks.info

http://www.it-ebooks.info/

The async machinery is designed to allocate as few objects as possible. That’s why the
state machine is a struct, as are the AsyncTaskMethodBuilder types. They are only moved
to the heap if the async method is paused.

Task is not a struct, however, so it always needs to be allocated on the heap. For this
reason, .NET has a few preallocated Tasks that are used when an async method com-
pletes synchronously, and returns one of a few common values, for example:

• A non-generic, successfully completed Task

• A Task<bool> containing true or false

• A Task<int> containing a small number

• A Task<T> containing null

If you are writing a cache that needs to have very high performance, and none of these
apply, you can avoid the allocation by caching the completed Task rather than the value.
It’s rarely worthwhile, though, as you are likely to be allocating objects elsewhere in
the code anyway.

So, in conclusion, async methods that finish synchronously are already very fast, and
optimizing them further is hard. Only consider spending effort on caching Tasks if your
application isn’t as fast as you’d like, and you find that garbage collection is the issue.

Async Performance Summary
While async code always uses more processor time than the equivalent synchronous
code, the difference is usually small in comparison to the operation that you’re making
asynchronous. In server-side code, the cost needs to be weighed against the memory
footprint of the extra threads. In UI code, and when using actors for parallelism, async
code is both faster and neater than implementing asynchronous patterns manually, so
we should always use it.

Finally, when an operation usually completes immediately, there is no harm in using
async code, because it is only slightly slower than the equivalent non-async code.

92 | Chapter 15: The Performance of Async Code

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Alex Davies is a coder, blogger, and concurrency enthusiast from England. He is cur-
rently a developer and product owner at Red Gate, working on tools for .NET devel-
opers. Before that, he completed a degree in computer science at Cambridge University,
and still has theoretical CS in his blood. In his spare time, he writes an open source
Actors framework for .NET, to let people write parallel programs more easily.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	Preface
	Intended Audience
	How to Read This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	Asynchronous Programming
	What’s So Great About Asynchronous Code?
	What Is Async?
	What Async Does
	Async Doesn’t Solve Everything

	Chapter 2. Why Programs Need to Be Asynchronous
	Desktop User Interface Applications
	An Analogy: The Cafe

	Web Application Server Code
	Another Analogy: The Restaurant Kitchen

	Silverlight, Windows Phone, and Windows 8
	Parallel Code
	An Example

	Chapter 3. Writing Asynchronous Code Manually
	Some Asynchronous Patterns Used in .NET
	The Simplest Asynchronous Pattern
	An Introduction to Task
	The Problem with Manual Asynchrony
	Converting the Example to Use Manual Asynchronous Code

	Chapter 4. Writing Async Methods
	Converting the Favicon Example to Async
	Task and await
	Async Method Return Types
	Async, Method Signatures, and Interfaces
	The return Statement in Async Methods
	Async Methods Are Contagious
	Async Anonymous Delegates and Lambdas

	Chapter 5. What await Actually Does
	Hibernating and Resuming a Method
	The State of the Method
	Context
	Where await Can’t Be Used
	catch and finally Blocks
	lock Blocks
	LINQ Query Expressions
	Unsafe Code

	Exception Capture
	Async Methods Are Synchronous Until Needed

	Chapter 6. The Task-Based Asynchronous Pattern
	What the TAP Specifies
	Using Task for Compute-Intensive Operations
	Creating a Puppet Task
	Interacting with Old Asynchronous Patterns
	Cold and Hot Tasks
	Up-Front Work

	Chapter 7. Utilities for Async Code
	Delaying for a Period of Time
	Waiting for a Collection of Tasks
	Waiting for Any One Task from a Collection
	Creating Your Own Combinators
	Cancelling Asynchronous Operations
	Returning Progress During an Asynchronous Operation

	Chapter 8. Which Thread Runs My Code?
	Before the First await
	During the Asynchronous Operation
	SynchronizationContext in Detail
	await and SynchronizationContext
	The Lifecycle of an Async Operation
	Choosing Not to Use SynchronizationContext
	Interacting with Synchronous Code

	Chapter 9. Exceptions in Async Code
	Exceptions in Async Task-Returning Methods
	Unobserved Exceptions
	Exceptions in Async void Methods
	Fire and Forget
	AggregateException and WhenAll
	Throwing Exceptions Synchronously
	finally in Async Methods

	Chapter 10. Parallelism Using Async
	await and locks
	Actors
	Using Actors in C#
	Task Parallel Library Dataflow

	Chapter 11. Unit Testing Async Code
	The Problem with Unit Testing in Async
	Writing Working Async Tests Manually
	Using Unit Test Framework Support

	Chapter 12. Async in ASP.NET Applications
	Advantages of Asynchronous Web Server Code
	Using Async in ASP.NET MVC 4
	Using Async in Older Versions of ASP.NET MVC
	Using Async in ASP.NET Web Forms

	Chapter 13. Async in WinRT Applications
	What Is WinRT?
	IAsyncAction and IAsyncOperation<T>
	Cancellation
	Progress
	Providing Asynchronous Methods in a WinRT Component

	Chapter 14. The Async Compiler Transform—in
 Depth
	The stub Method
	The State Machine Struct
	The MoveNext Method
	Your Code
	Transforming Returns to Completions
	Get to the Right Place in the Method
	Pausing the Method for the await
	Resuming after the Await
	Completing Synchronously
	Catching Exceptions
	More Complicated Code

	Writing Custom Awaitable Types
	Interacting with the Debugger

	Chapter 15. The Performance of Async Code
	Measuring Async Overhead
	Async Versus Blocking for a Long-Running Operation
	Optimizing Async Code for a Long-Running Operation
	Async Versus Manual Asynchronous Code
	Async Versus Blocking Without a Long-Running Operation
	Optimizing Async Code Without a Long-Running Operation
	Async Performance Summary

